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ABSTRACT 

The main challenge addressed in this work is to develop and validate an algorithm able to 

track and estimate the relative position and motion of on-orbit, un-modeled targets by 

using only passive vision. The algorithm developed is based on well-known image 

processing techniques. To achieve this goal, a number of different approaches were 

analyzed and compared to assess their performance for a satisfactory design. The code 

also has a modular general structure in order to be more flexible to changes during the 

implementation until best performance is reached. 

Artificially rendered high quality, animated videos of satellites in space and real 

footage provided by NASA have been used as a benchmark for the calibration and test of 

the main algorithm modules. The final purpose of this work is the validation of the 

algorithm through a hardware-in-the-loop ground experiment campaign. The 

development of the Floating Spacecraft Simulation Test-bed used in this work for the 

validation of the algorithm on real-time acquisition images was also documented in this 

thesis. The test-bed provides space-like illumination, stereovision and simulated 

weightlessness frictionless conditions. 

Insight on the validity of this approach, describing the performance demonstrated 

by the experiments, the limits of the algorithm and the main advantages and challenges 

related to possible future implementations in space applications, were provided by this 

research. 
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EXECUTIVE SUMMARY 

The main goal of this thesis is the development of an algorithm able to estimate relative 

position, attitude and motion using only monocular camera images in the far range, 

stereovision in the medium range and monocular images for the docking. On-orbit 

proximity maneuvering using autonomous spacecraft is today one of the major topics of 

interest within the space community. The potential capability of rescuing, repairing or 

recharging orbiting spacecraft, harvesting for orbiting components or removing space 

debris using unmanned robotic vehicles has proven commercial, military and scientific 

interest despite the complexity of such operations. 

 One of the main challenges of autonomous on-orbit proximity maneuvering is the 

relative navigation. A promising solution for relative navigation is the use of mono or 

stereovision for the detection and tracking of a target and for the estimation of relative 

position and attitude. Camera systems can have small form factors, are usually relatively 

inexpensive and do not require too much power. Another advantage of vision systems is 

that image processing can be used to define features without a priori information on the 

target. This characteristic extends the applicability to unknown or damaged targets whose 

features and shape are not a priori known.  

The main challenges related to vision based systems are the following: 

• image processing can be computationally demanding, 
• vision systems are affected by changes in the illumination conditions, 
• cluttered background and repeated patterns can cause false positive 

matching and detection, 
• range information for unknown targets is available only within the 

stereovision interval of applicability, and 
• the tracking can be affected by frame rate and resolution. 

The main objective of this research was to investigate the use of vision-based 

systems for space applications through the development and test of an artificial vision 

algorithm. 



 xx 

The algorithm was designed by using well-known image processing and 

estimation techniques and implemented in a modular fashion to provide a “machine 

learning” like capability to adapt to the scenario. 

The overall algorithm logic can be summarized by the following four main tasks:  

1. Region-of-interest determination: Background subtraction processes the 
acquired images by masking the background and the obstructing features. 
The process uses several techniques, such as static background subtraction 
and optical flow. 

2. Feature detection: The algorithm uses Harris corner detection to detect and 
classify the features of the target.  

3. Feature tracking: The detected features are tracked by the Kanade Lucas 
Tomasi (KLT) algorithm. Tracking provides the information necessary for 
the optical flow used in the estimation phase. 

4. Position/Motion Estimation: The algorithm estimates linear and angular 
velocities through the epipolar constraint, while range is estimated using 
the image offset of two cameras in stereovision. The attitude is estimated 
defining a reference frame fixed with the main tracked features and 
integrating the estimated rigid body rotations in time.  

The algorithm was tested by using computer rendered animations that simulate 

the space environment, features and illuminations. The finalized algorithm was calibrated 

on real on-orbit footage provided by NASA, showing rendezvous and docking maneuvers 

of Soyuz, Space Shuttle and Progress missions in the proximity of the International Space 

Station. 

A fourth generation of the floating spacecraft simulator test-bed (FSS) was also 

developed. The test-bed was used for the hardware-in-the-loop validation of the 

algorithm. The experiments were designed to verify the performance of the stereovision 

system with real-time acquisition, planar orbital-like dynamics and space-like 

illumination conditions, providing detection, tracking and relative position and attitude 

estimation (usually called pose estimation). 

From the results of the experimental testing, it was possible to show the reliability 

of the algorithm in detecting and tracking the features on the hovering FSS test-bed unit 

and the capability to estimate the distance within the stereovision range with an average 



 xxi 

error of 2.5 cm. The tests also proved that the image acquisition rate can be reduced to 

about 3.0 frames per second (fps) thanks to the typical low relative speed of on-orbit 

maneuvers.  

The epipolar transformation algorithm did not provide the full estimation of the 

pose due to unsolved bugs, but some partial results (limited to linear and angular 

velocities along certain axes) do show that the method is promising, and correction of the 

algorithm may provide the capabilities wanted. 

It was shown in this research that a vision-based algorithm can be used in real-

time to detect and track on-orbit spacecraft for a wide range of illumination conditions 

and background scenarios with a low frame-rate.  
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 1 

I. INTRODUCTION 

A. SPACE APPLICATIONS FOR UNMANNED AUTONOMOUS 
SPACECRAFT 

The advantages of on-orbit proximity operations have been widely discussed in 

several works [1–5] and have inspired a large number of studies on proximity maneuvers, 

space robotics, range sensors, teleoperation [6], [7] and more. Many studies highlight the 

commercial interests that could derive from on-orbit proximity operations extending the 

lifetime of satellites through refueling, upgrade, maintenance or harvesting parts from 

decommissioned orbiting spacecraft. Furthermore, system reconfiguration, rescue, 

removal of resident space objects [5] or safety inspection are other extremely important 

topics [1]. Despite the complexity of this type of mission, the progress in space robotics 

has made unmanned missions the most attractive option for on-orbit services [4], [6]. For 

example, the fact that on-board human operators are not involved drastically reduces 

costs, risks and mission complexity. In addition, robotic systems can be kept inactive in 

space or work with no interruption, resulting in extending a mission’s lifetime. The only 

unmanned orbiting proximity operations that have been performed were demonstration 

missions, but missions like ETS-VII, Orbital Express and XSS-11 have successfully 

demonstrated the level of maturity of several technologies for rendezvous, docking and 

proximity operations on resident space objects (RSO) [8], [9].  

In the past few years an increasing number of studies [5], [10–13] have proposed 

autonomous unmanned spacecraft provided only with on-board monocular or 

stereovision cameras as a possible answer for an effective, low cost, low power and low 

weight solution for on-orbit proximity operations. The interest in vision-based systems is 

also motivated by the need to develop systems which are able to track passive, un-

modeled, non-cooperative spacecraft. Indeed, targets with active sensors, beacons, 

markers or known features represent only a small number of the space objects that require 

on-orbit proximity operations technology as stated in [13], [14]. Many on-orbit proximity 

operations missions may require tracking and estimation of the relative attitude of 

decommissioned satellites with unknown dynamics, structure, shape and mass properties. 
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Another important example of potential application for tracking and state 

estimation of non-cooperative targets is the avoidance or active deorbiting of space debris 

such as damaged satellites, broken components, abandoned launcher stages or other 

potentially hazardous objects orbiting the earth. So far, avoidance of resident space 

objects has been performed through ground-based detection and control, but the 

importance of having on-board autonomous detection systems has been discussed in [15] 

and [16]. Effective on-board autonomous detection systems will reduce risks and costs 

associated with RSO detection, increase the range of the RSO sizes detectable and 

eventually be usable in outer space missions. 

B. FOCUS OF THIS RESEARCH 

As mentioned before, a number of approaches in the literature investigate the use 

of Vision-Based systems for on-orbit tracking and relative position and attitude 

estimation (also called pose-estimation). Only a few studies exist on the use of vision 

sensors on a completely unmodeled and non-cooperative target.  

The main challenges of on-orbit camera sensing related to fundamental issues 

such as illumination and reflections, optical deformation, frame rate, stereovision’s 

limited range, noise and cluttered background are investigated in this work. In particular, 

the challenge of detecting and tracking an unknown, non-cooperative target is focused on 

in this thesis. No a priori information is considered available other than the target being 

man made (with straight lines, regular patterns and evident corners).  

The development of a real-time, vision-based algorithm and the new generation of 

the floating spacecraft simulator (FSS) test-bed installed in the Spacecraft Robotics 

Laboratory (SRL) at the Naval Postgraduate School (NPS) is used to provide 

experimental data and demonstrate the feasibility of the various approaches described in 

this work. 

C. VISION BASED TRACKING AND POSE ESTIMATION IN SPACE 

Model uncertainty on a non-cooperative target is considered in [13]. The use of 

multiple-iterated Kalman filters (IEKFs) combined with a Bayesian maximum a 
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posteriori (MAP) estimator that estimates the inertia tensor is proposed in this study. A 

numerical simulated comparison between the robust multiple-IKEF scheme and a plain 

IEKF (aware of the true target inertia) are provided, demonstrating significant robustness 

improvements using the first approach.  

An IKEF is used also in [17] and [18] combined with optical-flow and disparity 

techniques to estimate the three-dimensional (3D) structure of the target. The 

attractiveness of this method is that it does not require a known model of the target since 

it uses point-wise kinematic models. The pose of the 3D structure is then estimated using 

a dual quaternion method [19]. The robustness and validity of this method have also been 

validated through hardware experiments on simulation mockups. The same image-

processing technique was used in the closed loop vision-based control algorithm for the 

Vision based Navigation System (VIBANASS) experiments on the European Proximity 

Operations Simulator (EPOS) [20]. These experiments demonstrated the robustness of 

the guidance, navigation and control (GN&C) algorithm with variable illumination 

conditions and luminosity ranges using image processing to hold a position, to 

autonomously navigate the docking maneuver or to aid a delayed teleoperation. Several 

useful observations came out of this work: a) calibration is needed to transform camera 

measurements to world coordinates; b) time delay affects mostly distance measurements; 

c) experiments with autonomous systems equipped with vision show improved 

performance compared to systems with delayed teleoperation. 

A vision-based control algorithm to keep the camera always pointing towards the 

detected unknown RSOs is introduced in [5]. The main contribution is given by the 

comparison between the use of monocular and stereovision in the control algorithm. 

According to [5], we find that stereovision improves the robustness and speed of the 

tracking while reducing fuel consumption. 

Stereovision is also considered in [11], this time for the inspection of an unknown 

object. The vision-based algorithm is required to guide the spacecraft around the target at 

a desired distance while pointing at it during inspection. The only information available 

to the GN&C algorithm is given by the on-board Gyroscope and stereo-camera raw 

images. This works was then successfully validated through hardware simulations using 
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the Visual Estimation for Relative Tracking and Inspection of Generic Objects 

(VERTIGO) ISS-Based research test-bed, making it the first on-orbit demonstration of an 

autonomous, vision-based, non-cooperative inspection. 

A feasibility study for autonomous rendezvous with an unknown space object 

using a monocular camera is presented in [12]. The method proposed implements two 

different extended Kalman filters (EKF) for the far-range relative orbit estimation and 

close-range relative position and attitude estimation. Simulation results provide a 

measure of the estimated errors during the maneuver, proving the convergence of the 

estimation of the full state with the applicability constraint of orbital maneuvers only. 

The method proposed in [21] for the pose estimation of a non-cooperative 

Satellite defines a target body-fixed frame through the identification of features on the 

surface and using two of the most common attitude estimation algorithms, TRIAD and 

QUEST, for the relative attitude measurements. The translational parameters and the 

center of mass are estimated through a Kalman filter. The unscented Kalman filter (UKF) 

and the EKF are then compared for the estimation of the moment-of-inertia ratios. All 

these steps have been validated through numerical simulations proving the feasibility of 

the method. In particular the UKF has shown to converge faster than the EKF in the 

moment-of inertia estimation phase, achieving similar accuracy in the long term.  

D. THESIS OUTLINE 

The core of this research is the design and implementation of a vision algorithm 

using approaches available in the literature. Several image processing techniques are 

analyzed in order to provide a well-informed, efficient foundation in the development 

phase.  

In the first part of the thesis, a short survey of the systems and methods used in 

the literature is provided as support for the choices adopted during the algorithm 

implementation. The most common image processing techniques of interest for this 

research and some results provided by analogous and interesting studies found in 

literature are briefly introduced. 
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The logic behind the image processing techniques used in this work, and why 

these methods have been chosen, is discussed in Chapter III. 

In Chapter IV, the artificial vision algorithm for tracking on-orbit relative motion 

(AViATOR) is presented. Here the algorithm logic and modules are discussed, 

introducing also the preliminary results obtained through virtual image rendering and real 

videos provided by NASA. 

In Chapter IV and V the implementation of the hardware-in-the-loop validation 

experiments on the floating spacecraft simulator are described and explained, and 

experimental data and plots are provided.  

Observations derived from both the analysis of the experimental results and the 

experience acquired during the development process of the algorithm and the test-bed are 

given in the conclusions. 

 



 6 

THIS PAGE INTENTIONALLY LEFT BLANK 



 7 

II. BACKGROUND 

A. ON-ORBIT RELATIVE NAVIGATION SYSTEMS 

The list of applications of Artificial-Vision is practically endless. Automated 

computer image processing has been extensively used in many types of unmanned 

systems and in a variety of environments (on-water, under-water, on-ground, air and 

space). It is used for surveillance, safety systems, inspection, vision-aided navigation and 

more. In particular, recent advancements in computer technology and image processing 

techniques have contributed to the increased reliability of real-time, artificial-vision 

systems for detection and objects identification, human face and pose tracking, traffic 

flow analysis, environment mapping, human senses enhancement or replacement, 

surgical support and robotic manipulator servicing, GPS-denial localization, autonomous 

mobile robots chase, capture and formation control [22], [23]. 

While relative navigation based on GPS or radio transponders is the most widely 

validated approach being applied on many manned and unmanned rendezvous and 

docking missions between cooperative spacecraft [24], [25], most of the potential non-

cooperative targets are not provided with on-board active sensors and require an accurate 

estimation of the state, the shape and the mass and inertia characteristics of the target.  

B. LASER-BASED RADARS AND SENSORS 

The most studied, developed and tested space sensors for on-orbit relative 

navigation and target tracking are laser based active radars and range sensors that use the 

collimated beam reflection to estimate the distance from the surface of the object [1], 

[26]. 

Several radar solutions, radar imaging processing techniques and constellation of 

scanning satellites have been proposed and tested for on-orbit RSO detection and 

cataloging [27], [28]. Of particular interest are the studies on laser radars and laser range 

sensors.  
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It is worth mentioning the Laser Communications Demonstration Equipment 

(LCDE) implemented on the Japanese Experiment Module (JEM) of the ISS [29]. This 

laser communication device has been used to demonstrate the ability of being converted 

into a range sensor for RSOs. The basic idea was to point the LCDE towards a debris 

surface (tracked previously using only sunlight reflection) and read the reflected return of 

the laser with the receiver of the LCDE. 

Laser radar sensors have also been widely tested for docking and proximity 

maneuvers in space. An example of laser radar is the Rendezvous Laser Radar (RVR), 

the primary sensor of the demonstration mission ETS-VII. Based on near-infrared laser 

diodes, the RVR measures the distance between transmitter and reflector within 660 

meters and with a line-of-sight angle of four degrees. With no moving components, the 

RVR was shown to be reliable, easy to test on the ground and cost effective [30]. 

Light Detection and Ranging systems (LIDAR) have been used for many years in 

space to support relative navigation during rendezvous of the Space Shuttle with ISS, 

MIR and HST [31]. Furthermore, many LIDAR based experiments have shown high 

performance and robustness in target detection, characterization, relative state estimation, 

rendezvous and docking. An example is the Videometer (RVDM) used on the ESA 

Automated Transfer Vehicle (ATV) for the last 250 meters of autonomous docking [32]. 

These qualities make the LIDAR technology the most appealing technology for 

many future large spacecraft missions like the Orion Multiple-Purpose Crew Vehicle 

(MPVC), which will be provided with a LIDAR sensor as primary relative navigation 

system [26, 33, 34]. 

A drawback of LIDAR systems is that their performance is affected by the 

reflectiveness of the target, and most of the applications require retro-reflectors or 

specific features placed on the surface in a specific configuration known to the navigation 

algorithm. It is through the tracking of these markers that most LIDAR systems derive 

the information relative to the target pose. A few exceptions, like the STS experiment 

system “TriDAR” [35], have demonstrated the use of LIDAR technology without retro-
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reflective markers by using 3D models of the target shape to retrieve pose information 

through virtual and real images comparisons [10], [33], [36].  

C. VISION-BASED SPACE SENSORS 

Compared to the systems mentioned above, cameras are passive devices, 

requiring less power than Laser-Based radars and having a smaller form factor [12], [37]. 

Camera systems are usually more compact and less complex and, therefore, less 

expensive, mechanically simple, reliable and easier to test [5], [13]. Visual Imaging 

capabilities can easily be integrated with human-in-the-loop teleoperations in partially 

automated control systems to overcome delay and connection loss [38].  

On the other hand, implementing camera systems as navigation sensors presents 

some challenges such as the dependency on ambient illumination and the configuration 

limits for range estimation through stereovision [10]. Nevertheless, camera systems have 

been widely used in space, mostly integrated with lasers or range sensors for spacecraft 

inspection, teleoperation activities and to aid navigation [38]. Vision-based is the solution 

adopted by the Orbital Express demonstration mission in 2007 for the Automated 

Rendezvous and Docking (AR&D), called the Advanced Video Guidance Sensor 

(AVGS). The AVGS fires two sets of laser beams onto retro-reflective markers 

positioned on the target and captures the images of the laser projection on visible and 

infrared cameras [9, 39]. Similar to LIDAR systems, retro-reflective patterns have been 

used by the software of these demonstration systems to reconstruct the relative pose. 

An example of a vision-based system that does not require retro-reflective 

markers is the Canadian Laser Camera System (LCS) used in the STS programs to detect 

possible damages on the Space Shuttle. The LCS combines the cameras’ photographic 

information with projected laser patterns on the surface to reconstruct the 3D image of 

the target [40]. 

A category of vision-based pose estimation methods uses models to either detect 

and match known two-dimensional (2D) and 3D features or to render 3D images 

(provided, for example, by computer aided design (CAD) data) and compare them with 

the real acquired views of the target. The use of 3D models or features is less affected by 
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change in illumination, shadows, optical deformations and view occlusion and is, 

therefore, more robust than 2D features [10]. 

A more challenging approach is assuming no a priori knowledge about the target 

mass, shape and structure and assuming that no retro-reflective markers or known 

features are present on the surface. Only a few studies have proposed an approach where 

the target is completely unknown [11], [12], [17] or has uncertain properties [13]. 

For the pose estimation without markers or models, the main challenge is given 

by the difficulty in retrieving range information. It is possible to retrieve the distance 

when two or more cameras are available and the target is in the stereovision range of the 

chaser [10] or when the images are collected from different known positions. This second 

option is likely to be the case when the chaser and target travel at different speeds on 

different orbits. 

Another challenge is to reliably acquire and track enough features to be able to 

provide a cloud of points for the pose estimator. Expected difficulties acquiring features 

can be due to reflective or featureless surfaces of space vehicles, large changes in 

illumination and high contrasting shadows, presence of repetitive patterns on the target 

and rich and shifting background objects (e.g., Earth) [10]. 

Finally, an important limit to be considered is the computational load required by 

the image processing algorithms. Usually, the computational power of space systems is 

limited, but a real-time tracking and pose estimation is needed in order to reliably use the 

system as a navigation sensor. 

D. ARTIFICIAL VISION DETECTION AND TRACKING METHODS 

Given the wide interest and artificial-vision’s many fields of application, many 

studies have approached image processing in different ways using different techniques. In 

The goals of the techniques we investigate are the following: a) select a region-of-interest 

within which the target is fully contained; b) detect and track a target using natural 

features; c) acquire information through the relative motion between camera, target and 

other objects/background.  
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The survey on “Object Detection Techniques” in [41] is an extremely useful tool 

for identifying a useful classification for vision-based methods; therefore, a similar 

classification is used here. 

1. Region-of-Interest Selection Methods 

The first phase of image processing usually requires the selection of an area of the 

image where the algorithm has a high confidence of detecting the target. A valid 

definition of a region-of-interest (ROI) is one where false positive detections and the 

computational load of the algorithm are reduced, giving a first estimate of the 2D 

localization of the object in the camera plane. Several methods can be used, but combined 

techniques often give the best results. Besides search methods that require a priori 

information, the most common techniques to define a ROI are based on static background 

subtraction and edge detection.   

Static background subtraction is usually implemented when the background is 

fixed with respect to the camera and only moving objects must be detected. Edge 

detection can be used to estimate the distribution of features along the image and discard 

areas where no edges are detected. 

In references [42] and [43], it is stated that methods based on basic segmentation 

(Bottom-Up Approaches) are known to run faster and use less computer resources as 

compared to methods that require known features.  

Bottom up approaches can also be integrated with Gaussian distribution or 

Fourier transform filters (BLOB) in order to refine and improve the quality of the ROI as 

described in the following sections.  

2. Features Extraction 

One of the main constraints is usually given by the amount of available a priori 

information about the target. According to [41] vision-based models can be grouped in 

three major classes: “Holistic Generative Models,” “Holistic Discriminative Models,” 

and “Multi-part Representation.” The first class includes all those methods that need a 

priori 2D and 3D shape information or surface texture information. As discussed in the 
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introduction, these methods cannot be used in the hypothesis for an unknown, unmodeled 

target. The “Multi-part representation” uses classification processes, hybrid techniques 

and decomposition methods that are at the moment beyond the scope of this work but 

could lead to interesting future research.  

The Holistic Discriminative Models use feature extraction techniques to analyze 

small regions and then machine-learning techniques to classify the location without the 

need of a priori models. According to [41] discriminative approaches are easier to 

implement and usually require less computation than other approaches. Only this last 

class of methods can be used in case of non-modeled targets.  

Features extraction methods can vary based on how the algorithm recognizes and 

classifies the differences of neighbor pixels in the image. Statistical distribution methods, 

pattern recognition and local shape filters are the most common techniques. Most 

commonly used are the Haar-like features and the Histogram of oriented gradients (HOG) 

[44]. 

Some advanced feature extraction methods combine a detector algorithm to find 

the features that match a numerical constraint and a descriptor to classify the feature and 

some other useful information (orientation, intensity, etc.).  

Very useful performance evaluations and comparisons between three Features 

extraction methods, or detectors, called “Bag of words” (BOW), HOG and “Deformable 

parts Model” (DPM) are given in [45]. These methods have been compared using several 

kinds of descriptors for ship detection. The performance of image processing techniques 

are usually strictly bounded to the parameters of the specific application; however, some 

considerations made in [45] were found useful as a starting point for the determination of 

the most suitable detector and descriptor for the research topic of this thesis.  

In [45], the comparison of several methods lead to the conclusion that a Hybrid 

method has a slightly better average performance in terms of small false-positive 

detection and low computational speed with respect to the BOW, the DPM and the HOG 

method, but the HOG detector is easy to implement, the fastest computationally and 

provides very good results as compared to the other techniques. 
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Selection of the right combination of detector and descriptor is usually based on 

the type of features the algorithm must detect, on the kind of deformations expected or 

changes in size and orientation, or simply on the computational cost constraints of the 

system [46]. 

From comparisons between the large variety of keypoint detection and description 

algorithms, one of the best performing is called the Scale-invariant feature transform 

(SIFT). Like other detection algorithms, SIFT uses detection windows to estimate 

gradients, orientation and other local characteristics to define points-of-interest (POI). 

Scaling these detection windows can be done using the Laplacian of Gaussian (LoG) as a 

blob detector. SIFT approximates the LoG using a faster difference of Gaussians (DoG) 

approach. Once DoG are defined, local extrema are computed to find keypoints [47]. 

Similarly to the SIFT, the speeded-up robust feature (SURF) approximates LoG to 

define the scaled windows and uses a box filter, which are extremely fast to compute with 

integral images [48]. According to [48] SURF is much faster than the SIFT while 

comparable in terms of robustness and repeatability under different viewing conditions. 

The SURF method is discussed in detail in Section 3. 

3. Motion-Based Detection Methods 

Static background subtraction, already mentioned as a ROI selection technique, is 

fast and easy to implement but can be affected by change in background luminosity or 

movement of the camera. Other motion-based detection methods worthy of mention are 

“optical flow” and “frame differencing” [49].  

With the optical flow, the speed of a feature is tracked on the 2D image plane, 

which corresponds to the projection of the 3D velocity vector of the target. The direction 

and speed information derived by this technique can be used to group or filter the 

features. 

Frame differencing compares two or more sequential frames in order to detect the 

change in location of a pixel or a feature. If the object moves slowly enough with respect 

to the frame-rate, it is possible to assume that in two different frames the similar images 
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close in location belong to the same translated object. This method becomes more robust, 

but slower, when more frames are used. 

E. KALMAN FILTER APPLICATIONS TO VISION ALGORITHMS 

Most of the vision-based algorithms are implemented with a Kalman filter [50] 

either for correcting the tracking errors, increasing the robustness and integrate measures 

form different sensors, or to reconstruct the 3D information and estimate the state and 

inertia properties of a target. According to the application and the approach taken, 

Kalman filters have been implemented in several ways. In the cases when the 

fundamental assumptions do not hold (as in non-linear/or non-Gaussian cases), the most 

common approaches are the extended Kalman filter (EKF) and the unscented Kalman 

filter (UKF). 

Nowadays the EKF is considered a standard method for the estimation of a non-

linear system’s parameters and state through a maximum likelihood approximation. The 

UKF has been designed to reduce the approximation errors of the EKF; extending the 

concept of unscented transformation [51] and several implementations also show better 

performance [47]. 

How to develop an algorithm that detects and tracks an object but also estimates 

the state of the target is investigated in this thesis. From the survey provided in [50], these 

two classes of applications are usually implemented with an EKF. 
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III. SELECTED IMAGE PROCESSING TECHNIQUES 

The main goal of this thesis is the development of an algorithm to estimate 

relative pose, position and motion using only monocular camera images in the far range, 

stereovision in the medium range and then monocular for docking. Each of these phases 

require the use of image processing techniques to retrieve valid data and a Kalman filter 

to reduce the error and estimate the full state of the target. 

The image processing itself can be divided into several subsets of operations, 

those which are necessary during the entire tracking and those required only for specific 

phases of the maneuver (detection, docking etc.). On-orbit time-lapse data from the 

Orbital Express mission [44] and taken from the International Space Station (ISS) [52] 

were used in this part of the work to demonstrate results of the implementation of the 

image processing methods described.  

A. REGION-OF-INTEREST DETERMINATION 

Preprocessing the image prior to target detection is extremely important. The 

creation of a ROI or the subtraction of the background reduces the probability of false- 

positive detections and reduces the computational load of the algorithm. Considering that 

the position of the camera on the chaser is known, it is usually possible in space 

applications to predict the background features. Background objects that can be 

recognized and filtered out of the image are, for instance, the Earth, manipulators, 

antennas and other objects mounted on the chaser or any other object with known state, 

features or relative velocity. The following methods were implemented and tested during 

the development phase of this thesis work. 

1. Background Segmentation 

Segmentation requires some knowledge of the target shape, illumination gradients 

or patterns in order to be able to recognize the target from the background (e.g., color, 

geometry, luminosity). The segmentation process tested in this work was mainly 

structured in three phases: edge detection, dilation, fill holes and erosion.  
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The edge detection recognizes the boundaries of objects in the image by detecting 

discontinuities in brightness [46]. The result of edge detection on an image taken from 

the Orbital Express mission [44] is shown in Figure 1. 

 
Figure 1. Original (on the left) and processed image (on the right) of Orbital 

Express using edge detection, after [44]. 

Dilation and “fill hole” processes are the equivalent of making a convolution in 

the binary domain. The process expands the detected edges and fills the smaller regions 

enclosed by the edges in order to obtain a more uniform and unified shape. Erosion, on 

the contrary, subtracts all the edges and small specks that are far from the main figure, 

providing a cleaner final result. Dilation, fill hole and erosion were applied in this order 

on the image previously obtained using edge detection (shown in Figure 1). Final results 

are shown in Figure 2 where it is possible to see that, due to errors in the segmentation of 

the background features, the shape of the satellite is not accurate and blends with portions 

of the background.  

This method proved to be difficult to calibrate, inefficient and computationally 

intensive, therefore, it was not used in the final implementation of the algorithm. 
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Figure 2. Edge detected Orbital Express image processed using the dilation 

and fill hole (on the left) and erosion (on the right), after [44]. 

2. Static Background Subtraction 

This method filters the background by subtracting from the image all the pixels 

that do not change in sequential frames. Many spacecraft cameras have a fixed angle with 

respect to the Earth, allowing high resolution cameras, located on artificial satellites, to 

recognize features on Earth regardless of the fact that the Earth cannot be considered a 

fixed background. For low resolution cameras, this technique can still be used to classify 

regions of the image in such a way that different detection techniques can be used.  

For test purposes this technique was implemented to impose the condition of only 

detecting features approaching from the dark regions of the images, such as objects 

coming from outer space, on higher orbits, or appearing above the Earth horizon. 

Although this constraint limits the use of the algorithm, when applicable it yields a much 

faster and more reliable detection than other, more sophisticated techniques; therefore, 

this method was implemented as an initialization option for the algorithm. As an 

example, it was tested on a time-lapse from an ISS camera pointing constantly towards 

the Earth’s horizon. An example of original image is on the left in Figure 3, while the 

processed image on the right. The processed image shows, in blue monochromatic scale, 

all the regions that have been discarded as background because of null or minimum 

relative motion. This technique was shown to be extremely useful when the camera has 



 18 

an almost constant relative motion with respect to background objects, while the relative 

motion of the target is more relevant. In the algorithm this technique was implemented as 

an option that could be activated or not according to the scenario of the simulation.  

 
Figure 3. Selection (in blue) of background regions on  

an ISS time-lapse frame, after [52]. 

3. Optical Flow 

With the method of the optical flow, the projected velocity of the pixels on the 

image 2D plane is calculated. Entire regions can be classified based on these 

measurements and removed from the image if considered belonging to known 

background objects. This method was shown to be computationally demanding but 

extremely useful for the initialization of the algorithm or after a ROI has been selected. 

The optical flow was used in this research mainly for the tracking phase of the algorithm, 

after the detection and description of the features. During tracking, the orientation of the 

velocity vector of the valid features provides a first estimate of the relative motion of the 

target. The use of the optical flow in the detection phase or in background subtraction is 

more challenging because it requires knowledge of the relative motion of the objects that 

need to be excluded from the detection analysis.  
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B. FEATURE DETECTION METHODS 

After the determination of a ROI has been achieved, it is necessary to detect and 

define the points-of-interest (POIs) in order to obtain measurements regarding a target’s 

orientation or position based on optical images. This operation can be the most 

challenging phase of image processing even when preprocessing techniques of 

background subtraction and ROI selection are implemented perfectly [41].  

POIs must exhibit two important properties:  

• the detection of the POIs must be robust (i.e., detectable for different 

illumination and resolution, from different viewpoints and with noise or 

deformations);  

• the description has to be distinctive, which means the algorithm must be 

able to recognize one POI from another. 

In this section, detection and description techniques used in the development of the 

algorithm are described and explained. 

1. Harris Corner Detection 

In image-processing the implementation of a reliable feature detection method is 

essential for a correct identification and tracking of physical points. As mentioned before 

the hypothesis of artificial satellites simplifies the problem of detecting the target because 

of the straight lines and regular patterns on the surface. One common method to select 

features is to identify cells (small regions of pixels) where the illumination gradient 

changes in two directions, as can be seen in Figure 4. 

Defining xI  and yI  as the image intensity gradients along the x- and y-axes, we 

base a numerical algorithm to select gradient changes on the invertibility of the matrix 

[53] 
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Figure 4. Corner feature in a window of pixels, from [53]. 

 

A more advanced version of this algorithm is the well-known Harris corner 

detection method. The matrix in Equation (1) is used to determine a threshold C  that 

defines whether a window of pixels can be considered a corner feature using 

 2( ) det( ) ( )C G G k trace G= + × , (2) 

where k is an arbitrary small scalar. 

Given the hypothesis of artificially regular shapes, the Harris corner detector has 

been shown to perform extremely well and is, therefore, used in almost all the phases of 

the detection, tracking and estimation algorithm for the thesis work. 

2. Gaussian Blob Detection 

Detected corners can be used to estimate the position and size of the target and 

build an initial region-of-interest. In order to build a robust and reliable region-of-interest, 

a Gaussian distribution of the detected feature was implemented and filtered. This 

method measures the Gaussian distribution of the detected features and highlights only 

the regions on the images corresponding to Gaussian peaks above a certain arbitrary 

threshold. A well calibrated filter provides a highlighted blob-like region where a higher 

density of corners has been detected, giving a first rough estimate of the position and size 

of the target [46].  
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In Figure 5, it is possible to see the region-of-interest derived by the computation 

of a Gaussian filter for an on-orbit time-lapse of Orbital Express. The ROI is represented 

in blue, the features in green and the blob-like object in white. 

 
Figure 5. Region of interest derived by a BLOB Gaussian filter on a frame of 

Orbital Express time-lapse, after [44]. 
 

This method was shown to perform extremely well with Harris corner detection 

and adaptive non-maximal suppression (ANMS). 

3. Adaptive Non-maximal Suppression (ANMS) 

The above mentioned adaptive non-maximal suppression is a technique that 

measures the relative distance between detected features with the scope of discarding 

some POIs when they are too close together. This method reduces the density of features 

in certain regions, where the large number of detections can actually decrease the 

performance of the algorithm. Too many close features do not give much valid 

information compared to the computational load that they can cause. Furthermore, 

Gaussian distribution filters, such as the one mentioned above, were shown in this work 

to be negatively affected by this problem, making the ROI focus on a very complex 

feature instead of the entire target spacecraft [54]. 
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4. Speeded-Up Robust Features (SURF) 

Corner detection is computationally efficient but does not consider local 

illumination intensity normalization, scale factors and orientation. As mentioned in the 

previous chapter, in order to classify features a more robust method is to use a 

combination of detectors and descriptors. 

The SURF detector is based on the fast-hessian detection method [48] which 

requires the computation of the determinant of the hessian matrix  

 ( ) ( ) ( )
( ) ( )
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σ
χ σ χ σ

 
=  
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to define location and scale, where the elements xxL , yyL xyL , and yxL  are the convolution 

elements of the Gaussian, respectively, along the x -axis, the y -axis and on both the x-

axis and the y-axis, all functions of the point coordinates ( , )x yχ = and of the scale σ . 

In the SURF algorithm the second-order Gaussian derivatives are approximated 

with box filters in order to make the algorithm faster to compute using integral image of 

different sizes. The box filter approximation is shown in Figure 6. 

 
Figure 6. Examples of box filter approximation (two images on the right) on 

Gaussian second-order derivatives (two images on the left), from [48]. 
 

The advantage of this method is given by the fact that, in order to detect features at 

different scales, the Gaussian derivatives must be computed only once while the image is 

iteratively filtered with sequentially bigger masks. 

The SURF descriptor identifies circular regions around the POI and computes 

Haar-wavelet responses. The responses are weighted with a Gaussian window and used 

to define the dominant orientation. The orientation is then used to define a square region 
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where Haar-wavelets are computed and weighted in a locally oriented reference frame. 

These oriented wavelets are used to retrieve a four-dimensional vector that describes the 

distribution of the intensities changes that characterize the feature. An example of SURF 

features detection is shown in Figure 7. 

 
Figure 7. SURF features detected using an Orbital Express image, after [44]. 

 

5. Histogram of Oriented Gradients (HOG) 

The histogram of oriented gradients (HOG) descriptor has been shown to 

outperform other feature detection methods in other applications [45], [55] given its 

simplicity and robustness. The HOG descriptor maps the image in small, equal-size-cell 

grids and normalizes the illumination with respect to local regions, describing the 

features through the distribution of local intensity gradients or edges.  

This method is simple, fast and robust but performs better in combination with 

detectors such as SIFT or SURF [55]. An example of HOG feature and HOG 

classification are represented in Figure 8. 
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Figure 8. Example of a histogram of gradients classified feature, after [44]. 

 

C. FEATURE TRACKING: THE KANADE LUCAS TOMASI METHOD 

The detection methods described above have been shown to be some of the most 

efficient algorithms for feature detection, being robust, repetitive and relatively fast. 

Nevertheless, the use of these methods on every camera frame is prohibitive when high 

sampling rates and low computational power are involved. A solution is to implement the 

KLT (Kanade, Lucas, Tomasi) tracking method [56], [57]. The KLT tracks frame-by- 

frame only the features that have been detected during the initialization of the algorithm. 

With this approach the code is not required to use detection computation on all frames 

but instead estimates the new location of old features by analyzing changes in windows 

of pixels. 

The KLT method detects only planar translations of the tracked features, 

measured through the definition of a displacement vector d . A matching threshold is used 

to either discard or accept the new location to overcome small errors due to noise and 

changes in attitude, distance and illumination conditions. The displacement vector is the 

vector that minimizes 

 ( ) ( ) 2
I x d J x wdxε = − −  ∫ ,  (4) 
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where ( )I x d−  and ( )J x  are the functions representative of the same feature on two 

sequential frames and ( )w x  is a weighting function. 

More details on how this solution is approximated are provided in [57]. The limit 

of this method is given by the loss of the features due to obstruction or complex and 

unknown change of patterns due to the motion of the relative view. To overcome this 

limit, a periodic detection-feature initialization might be necessary, with a period function 

of resolution, frame rate and relative velocity. 

D. BASIC POSE ESTIMATION TECHNIQUE 

Given a number of reliable features belonging to the same rigid body, the state of 

the detected points is constrained by the common dynamics of the entire body. A method 

to extract the state of the entire body through its features is described in [53] and called 

“the linear eight-point algorithm.” This method is based on the epipolar constraint 

according to which, given two different image planes, one being the reference and the 

second defined by a translation vector T  and rotation matrix R , two projections images 

of the same point 1x  and 2x  are related by  

 �
2 1 0Tx TRx =  , (5) 

where �T  is defined as 

 �
2 2Tx T x= ×  . (6) 

and �E TR= is called the essential matrix. 

Several epipolar-based methods to retrieve the relative position of two cameras 

with respect to the same target are proposed in [53]. In this work this approach is inverted 

without changing the main outline of the algorithm, and the epipolar measurements are 

used to retrieve the motion or attitude of a moving target with respect to a fixed camera.  

The “linear eight point algorithm” is ill-conditioned when the rate of change 

between two frames is low, which is the case of high quality videos and must be properly 

modified. When this is the case, the tracked points provide only a small parallax 

displacement, and the motion can be considered almost continuous. If, in addition, the 
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features in the 3D space are aligned on a plane, an extra constraint must be considered in 

the computation. These problems are dealt with in [53] where four different algorithms 

are proposed, depending on the motion (discrete or continuous) and whether the features 

in 3D are planar or not.  

Details on these algorithms and a step-by-step description of the implementation 

are provided in Chapter IV. 

E. STEREO AND GEOMETRY RANGE ESTIMATION 

The range measurements can be retrieved only after the target enters in the 

stereovision range, which is function of the relative position of the two cameras. Once 

features are detected on both images, matching algorithms are necessary to recognize the 

same POI in different 2D frame coordinates. A method used to retrieve range information 

from these stereo coordinates was proposed in [53], estimating a depth gain 1λ  from  

 1 2 12 1 2 12 0x R x x Tλ × + × =   (7) 

where 12R  and 12T  are, respectively, the rotation matrix and the translation between the 

two cameras, while 1x and 2x are the POI coordinates in the 2D frames. 

Several matching techniques can be used. SURF integrated matching algorithms 

that are useful as starting points for this technique are provided in MATLAB [46]. 

Another method investigated is based on the condition that, knowing rotation matrix 12R  

between the two stereo-cameras, valid matching points must satisfy 

 ( )2 12 1 0Tx R x× =  . (8) 

As stated before, the full 3D target location can be estimated by stereovision 

provided the distance between target and cameras are within certain limits. If it is too far, 

the algorithm is ill-conditioned and unreliable, and if it is too close, the two images do 

not match. While there is no other method to estimate the distance of a feature in the far 

range, in this work an idea to extend the range estimation in the close range is proposed. 
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For the monocular camera close range estimation, the proposed approach is to 

collect range and size information on specific geometries and features while the target is 

within stereovision range. This information is then used to compute the range from single 

projections. Examples of some possible geometries that can be tracked in close proximity 

range are provided in Figure 9. 

 
Figure 9. Example of geometric estimation features for the distance tracking in 

closer-than-stereo-vision range, after [44]. 
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IV. ARTIFICIAL VISION ALGORITHM 

The main goal of this thesis is the development of an algorithm to estimate 

relative position and motion of a satellite for on-orbit navigation and proximity 

operations through real-time image processing. In order to accomplish this task, the 

algorithm must be able to recognize when to activate and perform all the subsets of 

operations mentioned in the previous chapter. In this chapter, the implementation of these 

operations and the logic structure of the main algorithm are presented, followed by a 

description of the videos used for the first test, debugging and calibration phase. 

A. ALGORITHM STRUCTURE AND LOGIC 

The algorithm has been developed in a modular structure, as a collection of 

MATLAB scripts. This solution keeps the specific image processing tasks separate from 

the main logic that activates and combines them together and makes the entire algorithm 

adaptable to different applications and scenarios. 

An on-orbit proximity operations scenario was created as a benchmark maneuver 

for the development of the main logic and for the test of the image processing operations. 

The scenario considers an operation of detection, rendezvous and docking with an on-

orbit non-cooperative target. The maneuver has been divided into four main stages: 

• Far-range detection and tracking is when the chaser and the target are too 
far apart to recognize specific features. In this case the algorithm detects 
the presence of the target and separates it from the background. 

• Monocular middle-range motion estimation is when features of the target 
are recognizable and monocular estimation of the angular and linear 
velocities can be computed. 

• Stereo-range is when the target is within the stereovision range, and the 
algorithm can provide range measurements. 

• Monocular close-range is when the target is too close for stereovision 
computation, and previously detected geometries are used to estimate the 
range during the docking phase. 

An example of the four stages is shown in Figure 10. 
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Figure 10. Representation of the four stages of the benchmark scenario from Orbital 

Express time-lapse data, after [44]. 
 

The algorithm must be able to recognize the stage of the maneuver and adapt 

accordingly, activating and modifying the appropriate sub-functions. A description of 

how the algorithm performs this task is provided below, followed by the description of 

the structure logic of the other functions. 

1. Main Logic 

The Main Logic is defined through three modes of operation: initialization, 

tracking and estimation. Within these modes, the main logic triggers different sub-

functions according to the stage of the maneuver. A general schematic of the logic is 

provided in Figure 11.  
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Figure 11. Logic schematic of the vision-based algorithm. 

 

The initialization phase includes the preprocessing of the image and the first ROI 

selection. The preprocessing options must be calibrated based on known initial-view 

conditions (like Earth horizon position and on-board camera occlusions), while the ROI 

is automatically generated when an object is detected.  

The tracking phase utilizes the first ROI generated to run the Harris corner 

features detection only within the defined limits. The target is tracked through the 

features detected as a point mass, updating the ROI until a sufficient number of high 

quality features is collected. When the features are recognizable, the KLT tracking 

activates on every frame, while the detection algorithm is disabled. The detection is re-

enabled only periodically to search for new features. The ROI is a function of the KLT 

features and updates on every frame. 

The estimation phase activates with the KLT output. Projected feature 

translations on the 2D image plane are computed with optical flow measurements. 

Relative pose and relative velocity of the target are estimated through epipolar and 

geometric transformations. The stereovision range estimation is activated either by a 
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threshold dimension of the ROI or a periodic stereo-frame comparison. When range 

measurements are available through stereovision, the algorithm computes the geometrical 

dimensions of the features. In the final phase, when stereovision is no longer available, 

this information is transferred to a geometric range estimator. The outputs change 

according to the stage of the maneuver:  

• Pointing information is available from the first detection of the point mass 
object.  

• Relative pose and velocity information are available only when the KLT is 
active and tracking of features is possible.  

• Range information is collected from the beginning of the stereovision 
range until docking. 

 

2. Initialization 

In this work the initialization phase proved to be extremely important for the 

performance of the subsequent tasks, but the quality of the initialization is a function of 

the initial condition information provided to the camera. Several initialization options 

were implemented for the different videos and experiments performed. 

If it is known that the background does not change in time and that the target is 

not visible during initialization, a first fast option is to mask all the gradients of 

illumination that appear in the initial images acquired. This method hides the regions 

where images are detected in the first frames and instructs the algorithm to search for a 

target only in the empty regions of the image. This method is fast and valid only if the 

target is expected to appear above the Earth horizon and is not visible from the beginning 

of the acquisition. Furthermore, the view angle with the horizon must be almost constant.  

A second option is to improve the static background by removing the mask over 

the background features once the target is detected and/or a ROI is created. In this way, if 

the tracked features cross over the masked regions after the initialization phase, the 

algorithm is still able to follow the tracked features within the ROI. 

Another possibility is to use the optical flow in order to mask all of the features 

that have a projected velocity not compatible with the expected velocity of the target on 
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the first frames acquired. This masking technique hides the features that may otherwise 

be confused with the target, including Earth’s surface or other spacecraft. The limit of 

this option is that relative speed information is not always available, but it is an efficient 

method to discard Earth features. 

An example of the implementation of the initialization is provided in Figure 12. 

The algorithm has been tested on a time-inverted video from an ISS time-lapse that 

shows the Cygnus spacecraft approaching the ISS, while the earth and the ISS robotic 

arm are background features. The Cygnus appears only after a few frames from the 

initialization. Static background subtraction was used to exclude arm and Earth features 

from the detection. Harris corner detection was used to detect the point mass target (the 

detected feature is indicated in green) and the ROI is initialized (indicated with the 

yellow box). The red arrow indicates magnified areas from the same frame. 

 
Figure 12. Example of static background subtraction, Harris detection and ROI 

selection on a time-inverted ISS Cygnus time-lapse, after [52]. 

 

3. Target Tracking   

Target tracking can be divided in two phases. In the first phase, when the target is 

too far away to recognize specific features, detected points of interest are simply treated 

as point masses. Harris features are used to update the ROI location using the same 

method implemented for the first detection during initialization.  

The algorithm activates the KLT tracking of distinct features when the target is 

closer. KLT provides the position of each valid feature in sequential frames, making it 
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possible to track them and use optical flow analysis to estimate the 2D image projected 

velocity. The points detected are also used to update position and dimensions of the ROI. 

A periodic loop is implemented that activates the Harris detection in order to 

search for new features in the updated ROI and to reinitialize the KLT tracking. 

Deactivating the Harris detection within the periods reduces the computational 

complexity of the algorithm. The period must be calibrated based on the quality of the 

acquisition and was found to be mostly a function of frame rate and resolution. 

Images from the ISS-Cygnus video that describe this phase are provided in Figure 

13 and Figure 14. The KLT tracked points are indicated in red, while the updated Harris 

points are indicated in green. The ROI is indicated with the yellow box. The red arrow 

indicates the magnified view of the ROI. 

4. Estimation 

The KLT tracking provides the 2D image coordinates of a set of valid features for 

each frame. This information is used in the estimation phase to measure the projected 

velocity of each feature through optical flow analysis. This measure is then used for the 

Epipolar transformation algorithm to estimate the angular and linear velocity of the rigid 

body detected. Details on the algorithm used can be found in [53].  

Relative attitude information can be defined using the geometric transformation 

algorithm, which defines a coordinate frame fixed to the rigid body and estimates the 

transformation between the body and the camera frame [46]. 
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Figure 13. ISS-Cygnus tracking and update using Harris features detection  

and KLT, after [52]. 

 
Figure 14. ISS-Cygnus tracking and update using Harris features detection and KLT 

at a close range, after [52]. 
 

While these tasks are performed, the stereo images are compared in order to 

detect when the target enters the stereovision range. The stereovision sub-function 



 36 

activates when a large-enough threshold distance between the same features on two 

images is detected. 

The stereovision uses SURF to describe and match points between the left and 

right images. The displacement is then used for the range estimation. The range is not 

only used as an output of the algorithm but is also necessary to estimate the geometrical 

dimensions of shapes and strong features on the target. This information is then classified 

and reused in reverse to estimate the range when the stereovision capabilities are no 

longer available. Indeed, when the target is too close to the chaser, some features might 

be outside the field-of-view of a camera or one camera might be occluded by the docking 

body. 

B. ALGORITHM’S LIBRARIES  

The algorithm discussed in this section is a collection of MATLAB scripts 

developed to implement the capabilities described above. MATLAB was chosen as the 

initial development and test coding language for several reasons: 

• The MATLAB image processing toolbox is provided with most of the 
algorithms analyzed in this work; 

• MATLAB code can be integrated with C code and Simulink models for 
hardware-in-the-loop implementations; 

• MATLAB/Simulink code can be compiled as a C real-time executable 
with the open-source RTAI Linux OS. 

Future work is required to implement this algorithm as a single Simulink block, 

making the algorithm easily implementable in RTAI GN&C Simulink models. The 

MATLAB scripts described here are all collected in Section A of the Appendix of this 

thesis. 

1. Initializer 

The “initializer.m” file is a script used only at the beginning of the algorithm to 

upload all the initial conditions, calibration gains and motions that define how the 

algorithm performs the image processing and the estimation. 
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This script begins with a list of options that define the performance of Harris, 

SURF, ROI and stereovision. The main options are provided in Table 1. All the other 

values defined in the initializer are only necessary to pre-allocate initial variables. 

A second part of the script defines and loads the input camera or the input video. 

Most of the values in the initializer are defined as global variables in order to use them in 

all the other subscripts of the algorithm.  

2. MAIN_AViATOR 

The main script called “MAIN_AViATOR.m” has the function of connecting, activating 

and deactivating all of the functions of the algorithm. The main file keeps track of the 

number of frames computed and triggers the periodic functions. The schematic of the 

main algorithm is provided in Figure 15 where it is possible to see the periodic loops, the 

optional tasks and the functions. The main script also has the task of detecting when the 

target enters or leaves the stereovision range or when the target is no longer tracked. 

3. FUN_BACKGROUNDSUB 

Two methods for the subtraction of the background are implemented in the 

function called FUN_BACKGROUNDSUB.  

The static background subtraction is used to detect the gradients of illumination 

due to features in the first frame and mask these features on subsequent frames until the 

approaching target is detected. This function is activated only when it is known that the 

initial frames do not contain the target and most of the background is static or slow 

relative to the camera. This function is extremely powerful because it drastically reduces 

initial detection error and computational load.  
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Table 1 List of algorithm initialization options. 

Name Function 
CreateVideo set to 0 or 1 to activate the creation of a video output  
CreateImage set to 0 or 1 to activate the creation of a frames output 
Refreshperiod number of frames between detection updates during the tracking 
HFOV camera horizontal field of view 
fl focal length of the camera measured in meters 
Dstereo horizontal distance between two cameras 
pix square pixel dimensions in micrometers  
BackgroundSub set to 0 or 1 to activate the static background subtraction 
Detect set to 0 or 1 to hold the detection until tracking is possible 
Hstrongest number of strongest Harris points that the algorithm will classify 
Hquality threshold quantity. Harris detector discards corners with a quality 

below this value 
SurfSwitch set to 0 or 1 to activate SURF as detector/descriptor 
Sstrongest threshold quantity. SURF detector discards features with a quality 

below this value 
ANMSSwitch: set to 0 or 1 to activate ANMS in the detection 
ANMSdistance defines the radius in pixels of the ANMS 
Blength length added to the Blob Gaussian distribution 
Bsigma standard deviation of the Blob Gaussian distribution 
Bnumber number of strongest Blobs that the algorithm will classify 
Bmode defines the method of selection of the Blob (numbered from 1 to 3) 
BroiDim pixel sides dimensions of the ROI created around the first Blob 
KLTroi set to 1 discards all the tracked points too far from the ROI 
KLTvalue maximum distance to discards KLT points too far from the center of 

the ROI 
KLTroiDim number of pixel to make the KLT ROI bigger than the farthest KLT 

point. 
Distance stereovision threshold activation distance 
Stereovision set to 0 or 1 to activate Stereovision  
Stereoperiod number of frames between activation of the detection during the 

stereovision 
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Figure 15. Logic schematic of the main script MAIN_AViATOR.m . 
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The background segmentation uses a combination of MATLAB built-in 

commands. The edges are detected with “edge” command and dilated using “imdilate.” 

The interior gaps are filled with “imfill,” and the final blob image is adjusted with 

“imclearborder.” This method is extremely sensitive to the illumination conditions and to 

the sensitivity parameters chosen, requires more computation than static background 

subtraction and is less reliable.  

For some videos tested in this work, an optical flow background subtraction was 

needed, where the features were selected based on the speed. When the methods 

mentioned above could not be used or were not necessary, the detection was implemented 

for the entire image or only in manually selected ROIs.  

4. FUN_DETECTION 

Harris corner detection is activated through the function called 

“FUN_DETECTION.” The function uses the built-in MATLAB command 

“detectHarrisFeatures” for detection, selects the strongest points and activates the ANMS 

sub-function to reduce the number of point in overcrowded locations. The code reorders 

the detected points based on the quality metric computed by the detection and eliminates 

all points within a circle of arbitrary radius centered on the strongest points. 

The coordinates are then used for the Blob ROI selection during the initialization 

and for the KLT periodic update. 

5. FUN_SURF 

The SURF code is identical to the Harris corner detection code but activates the 

MATLAB built-in function “detectSURFFeatures” using the HOG description through 

the “extractfeatures” command. The performance of this function was compared with the 

performance of the Harris corner detection to analyze the difference. 

Tests in this work showed that SURF is more precise and provides more 

information about the features, making it a stronger descriptor for matching features in 

different frames (or cameras), but is computationally more demanding. During the 

detection phase the high quality information of the SURF is not necessary, but a low 
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computational load is essential; therefore, SURF was used only in the stereovision phase, 

where robust features-matching is essential, while the Harris corner detection code is 

preferred for the initial detection and periodic updates of the KLT tracker. 

6. FUN_BLOB 

The Gaussian blob filter is activated by the Harris function only during 

initialization in order to create blob-like figures and select the one that is the most likely 

target. The blobs are created through a Gaussian analysis of the distribution of features 

provided by the detection. The density determines the peaks and valleys of the 3D 

Gaussian over the 2D image plane. A threshold filters the lower regions of the Gaussian 

curve and forms the blob regions as white areas over a black image. 

The best selection of the blobs depends on what kind of information the user has 

on the target (dimensions, trajectory, etc.), but several tests have shown that if good 

background segmentation is implemented, simply choosing the bigger blob is sufficient. 

In case the blob represents only a part of the target or it is bigger than the target, new 

detection automatically updates the region-of-interest and eventually adapts to the 

features tracked. 

The blob function creates a zero matrix with the dimensions of the frame and 

updates the value within a range from the detected points according to the Gaussian 

distribution. If K  is the metric vector of each point provided by Harris feature detection, 

σ  the standard deviation of the Gaussian window, and n  a function of the arbitrary 

range defined in the initializer as “Blength,” it is possible to calculate for each element of 

the matrix a value iM  defined as 

 ( ) ( )2 2 2 22 21 1
2 2

T
n n

iM K e eσ σ

σ π σ π
− −   =       

 . (9) 

The blob selection instead uses the “bwconncomp” MATLAB command to detect 

connected regions and provide information like size and position. The classification of 

the blobs is then used to choose the larger one and to build a proportional ROI around it. 
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In this function a security “if statement” is also created to keep the ROI within the 

limits of the image in order to avoid errors with the detectors and the tracker. 

7. FUN_KLT 

The KLT tracker is based on the MATLAB built-in “step” command. The “step” 

command with the option “tracker” provides KLT points and a validity vector that 

indicates when a feature is no longer tracked. The KLT requires an initial set of features 

to begin tracking. The initial set of features is provided by the Harris detection during 

initialization and during the periodic updates. The mean value of the coordinates of the 

valid KLT points and the maximum distance from this value are used to build a new ROI 

for each frame. The ROI translates, expands or reduces its size according to the location 

of the features tracked. This method increases the robustness of the tracking and reduces 

the computational load and the error during periodic detection. 

8. FUN_EPIPOLAR 

The Epipolar transformation uses the tracked features of the KLT to estimate 

relative attitude and relative motion between the rigid body and the camera. The 

algorithm was developed from basic principles following the four methods provided in 

[53] and is reported in the following subsections. All results are demonstrated in [53]. 

a. Linear Eight-Point Algorithm 

The basic estimation method is the “linear-eight point algorithm” where, given the 

2D points coordinates in the image reference frame at two different times, we define the 

matrix X  as 

 1 2[ , ... ]n TX a a a=  (10) 

where each column ia  is the Kronecker product 1 2
i ix x⊗ defined as 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2[ , , , , , , , , ]Ta x x x y x z y x y y y z z x z y z z= . (11) 

The stacked essential matrix SE  is computed as the ninth column of xV , obtained by 

minimizing SXE  based on the singular-value decomposition (SVD) of X :  
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 T
X X XX U V= Σ . (12) 

The solution matrix SE must then be projected in the essential space. This is obtained by 

computing the SVD of the unstacked SE  and obtaining  

 1 2 3{ , , } TE Udiag Vσ σ σ= . (13) 

The values of U  and V are necessary for the estimation of the rotation matrix R  and the 

translation vector T  as 

 
2

T T
ZR UR Vπ = ± 
 

 (14) 

and 

 �
2

T
ZT UR Uπ = ± Σ 
 

, (15) 

where 

 
0 1 0
1 0 0

2
0 0 1

T
ZR π

± 
   ± = ±       

 . (16) 

This method provides a unique solution only if the following conditions are satisfied: 

• The number of points tracked is equal to or larger than eight. 
• The points are not aligned or on the same plane. 
• The rotation and translation provide sufficient parallax. 
• The parallax values must be larger than the noise. 
• A positive depth constraint is used. 

This algorithm was modified in [53] to overcome some of these limitations for the 

continuous and planar cases. 

b. Continuous Eight-Point Algorithm 

If the motion is slow compared to the frame rate, the algorithm does not have 

sufficient parallax distance between features to estimate the essential matrix with the 

method described in Subsection a  and must be modified as follows.  
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Indicating with the symbol ( )α×  the skew-symmetric matrix of a generic vector α , we 

define the skew-symmetric matrix of the linear velocity v  as 

 
3 2

3 1

2 1

0
( ) 0

0

v v
B v v v

v v

− 
 = × = − 
 − 

  (17) 

and the product of skew-symmetric matrices of the angular velocities ω  and of the linear 

velocities v as 

 ( )( )A vω= × × .  (18) 

We can express the “continuous Epipolar constraint” for a ix  position vector and iu  

velocity vector of each i  feature as 

 ( ) 0T T
i i i iu B t x x Ax+ =  . (19) 

 
Based on this constraint, the ia  necessary to build the X  matrix in (10) is a function of 

ix and iu : 

 2 2 2
3 2 1 3 2 1[ , , , , 2 , 2 , , 2 , ]Ta u y u z u z u x u x u y x xy xz y yz z= − − − . (20) 

In the MATLAB function the values of the points’ velocity are obtained through the 

optical flow, measuring the distance traveled of each feature on the 2D projection of two 

subsequent frames. The ratio between distance and frame rate provides the projected 

velocity in pixels per second. The SVD of X  provides the SE stacked vector. The 

vector SE is used to form a vector 0v with the first three elements and a matrix s  with the 

remaining six. The SVD of s  provides sV , 1λ , 2λ and 3λ  for 

 { }1 2 3, , T
s ss V diag Vλ λ λ= , (21) 

and computing ( )1 1 2 32 3σ λ λ λ= + − , ( )2 1 2 32 3σ λ λ λ= + +  and ( )3 3 2 12 3σ λ λ λ= + − , 

we define 

 1 3λ σ σ= −  (22) 

and 
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 2arccos σθ λ
− =  
 

. (23) 

The values λ and θ  are necessary to compute ( )2 2
Y

T
sV V R θ π= − −  and ( )YU VR θ= −  

with ( )YR α  being a rotation matrix along the y -axis of angle α . 

Four possible 3D velocities can be computed from 

 �
1 1,

2 2
T T

z zUR U v VR Vπ πω    = ± Σ = ± Σ   
   

 (24) 

and 

 �
1 1,

2 2
T T

z zVR V v UR Uπ πω    = ± Σ = ± Σ   
   

. (25) 

 

The method to obtain a unique solution is to choose the pair of angular and linear velocity 

vectors such that the product 0
T

iv v  is the maximum of the i  possible values as 

 { }*
0 0maxT T

i iv v v v= . (26) 

This method overcomes the problem of the small parallax displacement with the 

hypothesis of continuous motion but still requires at least eight non-planar features.  

c. Linear Four-Point Algorithm 

The four-point algorithm overcomes the limitation of the eight-point algorithm by 

introducing the planar constraint 

 
2 1 0x Hx =  (27) 

where H is the planar homography matrix defined as 

 1 TH R TN
d

= + , (28) 

with the variable N being the unit normal vector of the target plane with respect to the 

camera frame, d  the distance from the optical center of the camera, and R  and 

T rotation and translation, respectively, as defined in the previous subsections. 
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The homography matrix can be approximated by building the matrix 
1 2[ , ... ]n TX a a a= with ia  defined as the Kronecker product 1 2

i ix x⊗  and computing the 

SVD of X . The nine output elements are used to form a 3 ×  3 matrix LH . The SVD of 

LH  provides the 2σ  that is used to normalize LH  and obtain the homography matrix 

H as 

 
2

LHH
σ

=  . (29) 

The homography matrix is used to define several vectors and matrices necessary for the 

computation of the solution equations. The vectors 1v , 2v  and 3v  are the column vectors of 

the matrix V computed through the SVD of TH H as  

 T TH H V V= Σ . (30) 

The vectors 1u and 2u  are defined as 

 
2 2
3 1 1 3

1 2 2
1 3

1 1v v
u

σ σ

σ σ

− + −
=

−
 (31) 

and 

 
2 2
3 1 1 3

2 2 2
1 3

1 1v v
u

σ σ

σ σ

− − −
=

−
. (32) 

 
Based on these vectors, we define four matrices as 

 �
1 2 1 2 1[ , , ]U v u v u= , (33) 

 �
2 2 2 2 2[ , , ]U v u v u= , (34) 

 �
1 2 1 2 1[ , , ]W Hv Hu Hv Hu= , (35) 

and 

 �
2 2 2 2 2[ , , ]W Hv Hu Hv Hu= . (36) 
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The equations listed in Table 2 can be computed to retrieve the four solutions for R , 

T and N . The solutions can be reduced to two identifying the one which is consistent 

with the positive depth constraint 

 3 0TN e >  (37) 

where 3 [0,0,1]Te = .  

The implementation of planar methods was found extremely useful due to the 

quasi-planarity of the features detected in most of the scenarios analyzed in the 

experiments of this work. 

 
 

Table 2. The four possible solutions for the linear four-point algorithm 

 R N T 

Solution 1 
1 1 1

TR WU=  
 

�
1 2 1N v u=  ( )1

1 1
T H R N
d
= −  

Solution 2 
2 2 2

TR W U=  
 

�
2 2 2N v u=  ( )2

2 2
T H R N
d
= −  

Solution 3 
3 1R R=  

 
3 1N N= −  3 1T T

d d
= −  

Solution 4 
4 2R R=  

 
4 2N N= −  4 2T T

d d
= −  

 
 

d. Continuous Four-Point Algorithm 

For small parallax distances and high frame rate, the hypothesis of continuous 

motion was also applied to the planar algorithm. The matrix X is computed in the same 

way as for the linear case, while another matrix B is defined as  

 1 2, ,...
TT T nTB b b b =    (38) 
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where b xu= , with x  being skew-symmetric of the coordinate vector and u  the optical 

flow velocity vector. The stacked not-normalized homography matrix LsH  is computed 

using  

 p
LsH X B=  (39)  

where pX is the pseudo-inverse of the matrix X . The homography matrix is computed 

using  

 2
1
2LH H Iγ= −  (40) 

where { }1 2 3, , ,γ γ γ are the eigenvalues of the matrix T
L LH H+ . The matrix TH H+ has 

eigenvalues iλ  and eigenvectors iu . If all eigenvalues are zero, the linear velocity v  is a 

zero vector and the skew-symmetric matrix of the angular velocity � Hω = . 

The solution is computed by first defining α  1v , 2v , �1N and � 2N as 

 ( )1 3
1
2

α λ λ= − , (41) 

 ( )1 1 1 3 3
1 2 2
2

v u uλ λ= + − , (42) 

 ( )2 1 1 3 3
1 2 2
2

v u uλ λ= − − , (43) 

 � ( )1 1 1 3 3
1 2 2
2

N u uλ λ= − − , (44) 

and 

 � ( )2 1 1 3 3
1 2 2
2

N u uλ λ= + − . (45) 

 

The equations for the four solutions of the continuous epipolar matrix are provided in 

Table 3.  
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Table 3.  The four possible solutions for the continuous four-point algorithm 

 
1v  N 

1ω  

Solution 1 1
1

v v
d

α=   
�11N N α=  � �1 1 1

T
H v Nω = −   

Solution 2 2
2

v v
d

α=   
� 22N N α=  � �2 2 2

T
H v Nω = −   

Solution 3 3 1v v
d d
= −  3 1N N= −  � �

3 1ω ω=  

Solution 4 4 2v v
d d
= −  4 2N N= −  � �

4 2ω ω=  

 

9. FUN_STEREO_RANGE 

The estimation of the distance between target and chaser starts when the target is 

in stereovision range. Periodically, the algorithm measures the distance in pixels between 

the features detected on the frames collected on the left and the right cameras. When the 

distance is above a certain threshold, reliable estimation of the range is computed through 

stereovision. 

The points are detected on the left and the right frames with the MATLAB built-

in “detectSURFFeatures” within the ROI built from the KLT tracking function. The 

features are then extracted with the built-in “extractFeatures” and matched with the 

“matchFeatures” command. A description of how these built-in MATLAB commands 

work can be found in the MATLAB documentation [46]. 

The i  coordinates are multiplied by the dimension of the camera pixel (the “pix” 

value in the initializer) to convert the coordinate into meters. The new coordinate values 

are defined as ( )lX i and ( )lY i  for the left frame and ( )rX i  and ( )rY i  for the right frame. 

The focal length f  is added as the third element of the vector defined by 

 ( ) [ ( ), ( ), ]l l lx i X i Y i f=  (46) 

and 

 ( ) [ ( ), ( ), ]r r rx i X i Y i f= . (47) 
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The skew-symmetric matrix of ( )lx i  is indicated with � ( )lx i . If the camera is not rotating 

with respect to the chaser reference system, the rotation matrix between the frames is an 

identity matrix ( lrR I= ). For horizontal stereovision, the translation vector lrT  has only 

the horizontal element different from zero and represents the distance between the optical 

centers of the cameras. 

With these definitions it is possible to estimate the values of the depth scale λ  

applying a least-squares operation that optimizes  

  
2 2 1( ) ( ) ( ) 0lrx i T x i R x iλ + = . (48) 

The range Z is estimated multiplying the mean of the n values of λ  by the focal length 

as  

 
1

( )
n

i

fZ i
n

λ
=

= ∑ . (49) 

The distance between strongest features is then measured knowing the distance Z  and 

the dimensions of the pixels as in Figure 16.  

The range distance measures the segment indicated in Figure 16 as BG. The 

segment EG is the focal length which is provided with the camera specifications or can 

be estimated with camera calibration. The segment DF can be retrieved from the image 

measuring the difference in pixel coordinates and multiplying by the pixel width of the 

sensor. It is possible to build similar triangles and measure the physical distance AC 

between feature A and B with simple proportions: 

 DE BGAB
EG
⋅

=  (50) 

and 

 EF BGBC
EG
⋅

=  (51) 

 
The AC segment measures are stored in a memory array and used to retrieve the range 

when the stereovision estimation is not available. 
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Figure 16. Example of estimation of the physical distance between two features using 

range, focal length and projected pixel distance. 
 

10. FUN_GEOMETRIC_RANGE 

The geometric range function uses the classified distances between strong features 

measured with the stereovision function and tracked with KLT or matching SURF. When 

the target is very close to the camera, changes in distance between these features is the 

only source of information for the estimation of the range. Supposedly, in this proximity 

phase the relative angular velocities are low, and the chaser is slowly approaching the 

target for docking. The dominant variable is the linear velocity along the axis orthogonal 

to the 2D image, and the changes in projected distance between features are considered 

mostly due to variations in range. As mentioned before, the estimation of the range is 

obtained from the inverted operation implemented in the stereovision function to estimate 

the distance between features. 
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C. ON-ORBIT TIMELAPSE AND COMPUTER RENDERED VIDEOS 

In the development of the algorithm, the use of recorded or computer rendered 

videos was essential for the debugging and calibration of the code and for a first 

understanding of the constraints, limits and performance of the techniques implemented.  

In the first phase of the development, computer rendered 3D videos were created 

in order to test and debug the algorithm. Computer rendered videos allow full control of 

all the parameters that affect the detection, tracking and estimation of a target. Ideal 

conditions with no background, wanted rotations and known features can be simulated as 

well as more complex scenarios where tumbling objects, moving background and 

reflections are introduced. 

In the calibration phase the use of real, on-orbit footage is essential for testing the 

algorithm with real illumination conditions, real target features and real on-orbit 

background. To accomplish this task, NASA Johnson Space Center provided a collection 

of videos of on-orbit rendezvous and docking maneuvers with footage of the Space 

Shuttle, the ISS and Soyuz. 

1. Computer-Rendered 3D Videos 

The first debugging phase required a simple video, with no noise, high resolution 

and high frame rate in order to debug the detection and tracking algorithms. 

The open source software Blender 2.72 [58] was used for the creation of the 

computer rendered videos described. The Blender 2.72 software includes all the tools 

necessary to create a 3D object, add texture and material characteristic to the surface and 

then record animated videos with adjustable background and illumination conditions. 

The first video created was a simulated rendezvous and docking between two on-

orbit spacecraft. Lighting conditions, reflections and background were added to make the 

video more realistic and to make the detection and the tracking more challenging for the 

algorithm. Some example frames are provided in Figure 17. This video was used for the 

debugging and first calibration of the Harris corner detection, the ROI selection, SURF 

description and the KLT tracking algorithms. 



 53 

 
Figure 17. Computer rendered video of an on-orbit rendezvous maneuver for the 

debugging and first calibration of the vision algorithm. 

 

A second video was implemented using the same model and maneuver simulated 

in the first one. The only addition to the second video was the simulation of a 

stereovision camera, obtained recording rendered videos from two virtual locations with a 

known offset. The stereovision offset is seen in the two frames (left and right cameras) 

shown in Figure 18. 

Videos with only rotations or translation along known axes and easy to track 

features were created in order to debug the epipolar transformation algorithm. Several 

rendered videos were used to decouple linear and angular velocities in order to be able to 

detect errors in the code and test the estimation performance. Examples of videos used 

for this task are shown in Figure 19, where the rotation and translation of the objects 

rendered was changed accordingly to the measurement investigated. 
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Figure 18. Frames from the two simulated cameras of the computer rendered 

stereovision video. 
 

Another method was used to decouple the tracking error from the pose estimation 

error. A MATLAB script was developed to create a rigid rotating cloud of points. The 

script has as inputs the initial and final state vectors of the rigid body frame and generates 

arrays of geometrically organized or random points. The objects generated are then 

rigidly translated and/or rotated according to the initial and final condition. The output 

array of coordinates of the points before and after the rotation was used as error-free 

input to measure the quality of the estimation for linear and angular velocities. The 

algorithm is provided in Section B of the Appendix.  
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Figure 19. Examples of rotating objects in computer rendered videos for the 

debugging and calibration of the epipolar algorithm. 
 

2. NASA On-orbit Videos 

The “moving image repository” team at NASA Jonson space center provided a 

collection of nine video recordings from orbiting spacecraft’s during rendezvous, docking 

and relocation maneuvers. The videos have different illumination conditions, background 

and target features, matching the required generality necessary to calibrate and test the 

algorithm over several challenging conditions.  

The videos were not provided with relative attitude, relative velocity between 

camera and target or stereovision information, and in most of the videos the acquisition 

parameters are not constant since the camera is adjusted in magnification, focus, aperture 

and orientation. For these reasons these videos were mostly used in this work to test the 

detection and tracking function of the algorithm. 
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The high resolution and frame rate of these videos simplifies the detection and 

tracking tasks but increases considerably the computational load and the memory 

required to process the data; therefore, the videos implemented in this research were 

degraded in terms of frame rate. In this work the reliable detection and tracking 

performance of the algorithm over the degraded videos showed that the relative velocities 

in space are in general slow with respect to the frame rate of the cameras, and lower 

acquisition rates can be used to reduce computational load and power consumption. 

Description, calibration parameters and observation of the test implemented on these 

videos are provided in Chapter V. 
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V. HARDWARE-IN-THE-LOOP EXPERIMENTS 

The Hardware-in-the-loop experiments were conducted in the Spacecraft Robotics 

Laboratory at the Naval Postgraduate School in Monterey, CA on the Floating Spacecraft 

Simulator Test-bed (FFS). This thesis represents the latest of a series of research efforts 

dedicated to the investigation and development of autonomous spacecraft GN&C 

algorithms for rendezvous, docking, formation flying, collision avoidance, on-orbit 

assembly and robotic manipulation [59], [60]. In particular, previous efforts on an early 

version of the floating simulator was reported in [61] using single-camera vision and 

inertia measurement units for autonomous cooperative rendezvous and docking 

experimentation. 

The current experiments are held on the fourth generation FSS test-bed, the 

product of several iterations and upgrades implemented over the years. A detailed 

description of the test-bed and of the experimental setup is provided in the following 

subsections. 

A. THE FLOATING SPACECRAFT SIMULATOR TEST-BED 

The FSS test-bed is a two-dimensional, three-degrees of freedom experimental 

facility for the dynamic simulation of on-orbit maneuvers. The test-bed is mainly 

composed of a high precision flat surface and a set of compressed-air based hovering 

units. The dynamics of the FSS on the flat surface reproduces closely, in 2D, the 

weightlessness and frictionless conditions of the relative orbital flight 

1. High Precision Flat Floor 

The high-precision flat surface, shown in Figure 20, is a 4 m × 4 m granite table 

with a AAA surface precision grade, a planar accuracy of 0.0005±  inch ( 51.27 10−± ⋅  

mm) and a horizontal leveling precision of 0.01 deg. 
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Figure 20. Granite table of the FSS test-bed at the Naval Postgraduate School. 

 
The granite table is located in a clean/low-reflective room and provided with an 

ARRI LED temperature lamp to simulate several illumination conditions. An image of 

the temperature lamp and an example of the illumination effect are provided in Figure 21 

and Figure 22. 

2. UDP Network 

An ad-hoc internal wireless network is used for the stream of information between 

the VICON camera system, a Telemetry computer and the FSS units. More information 

on the development and implementation of this network can be found in [62]. 

The computers and the FSS units are provided with D-Link routers to connect 

with the wireless network. The executables that run on the FSS units and the Simulink 

models on the telemetry computer interface with the routers through customized 

Simulink UDP blocks (user datagram protocol), as described in [62], to compress, stream 

and receive telemetry information. A schematic of the network communication is 

provided in Figure 23. Wireless communication is indicated with black dash lines. Red 
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arrows indicate the infrared reflection on the passive markers of the VICON, and yellow 

arrows indicate wired connections. 

 
Figure 21. ARRI temperature lamp used in the FSS testbed to simulate changes 

in illumination conditions. 

 
Figure 22. Example of the space-like illumination simulated on the FSS testbed. 
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Figure 23. FSS network communication schematic. 

3. Telemetry Computer 

The telemetry computer is used to compile the algorithms, upload and start the 

executables, collect telemetry data and visualize results. The RTAI Linux OS is 

implemented in order to develop algorithms compatible with the real-time libraries 

installed on the FSS units. A screenshot from the telemetry computer is shown in Figure 

24, where it is possible to see two terminals for the SSH (secure shell) wireless link 

communication with the floating units and a Simulink telemetry model for the collection 

of the data. The computer is also used to compile the Simulink models in RTAI 

executables.  
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Figure 24. Desktop screenshot of the telemetry software and the SSH terminals. 

 

Ten VICON cameras are installed along the walls of the laboratory to collect and 

stream high quality, 3D position and attitude information. The VICON system is used to 

simulate reliable star tracker data or to provide ground truth data in a fixed reference 

frame. The VICON server is able to provide the position and the attitude of a rigid body 

with a resolution between 0.001 and 0.01 millimeters. The refresh rate is limited only by 

the streaming rate of the UDP network, while the resolution depends on the distance and 

number of passive markers on the tracked body. The VICON cameras can be recognized 

as red light above the granite table in Figure 25. A closer view of one of the VICON 

camera is provided in Figure 26. A screenshot of the VICON Tracker software is shown 

in Figure 27.  

4. Floating Units 

The FSS test-bed also includes a set of floating units, each provided with a 

compressed air tank and three flat air-bearings on the bottom. The air-bearings are non-

contact interfaces that ensure uniform pressure distribution of the film of compressed air 

on its surface. The release of compressed air through the bearings generates a small and 

constant hovering effect that creates a gap of about five microns between the granite flat 

surface and the pads, drastically reducing the friction. A picture of one of the new 

generation floating units is provided in Figure 28.  
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Figure 25. View of the VICON cameras above the granite flat floor of the FSS. 

 

Figure 26. One of the VICON cameras connected to the ceiling of the Spacecraft 
Robotics Laboratory. 
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Figure 27. Screenshot of the VICON software tracker. It is possible to recognize (as 
green squares) the position of the cameras installed along the walls of the laboratory. 

 

The most important components of the floating unit system are highlighted in 

Figure 29. The external structure was printed using the Fortus 400mc 3D rapid-

prototyping printer of the NPS Space Systems Academic Group, while the internal 

structure is made of aluminum and carbon fiber. The units were built to simulate fully 

autonomous, small spacecraft and are provided with on-board propulsion, electronics, 

computer and sensors. 

a. Propulsion System 

The propulsion of the FSS units is provided by eight supersonic thrusters mounted 

an each side of the four corners of the external structure. The thrusters release 

compressed air through custom-made supersonic nozzles mounted on solenoid valves. 

The air is provided by the same tank that feeds the floating system, while the valves are 

directly controlled by the PC104 relay board. The compressed air hovering and 

propulsion system are better described through Figure 30 and the detailed component 

schematic of Figure 31. Each thruster can produce up to 0.159 N. The combined 
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activation of the thrusters provides the actuation for the attitude and position control of 

the unit [63].  

 

Figure 28. Picture of a fourth generation FSS floating unit. 
 

b. Electronics 

A schematic of the electronics mounted on the fourth generation FSS unit is 

provided in Figure 32.  

The power is provided by an Ocean Server Board DC-DC converter. The power 

board uses two Lithium batteries and provides energy to all the on-board electronics.  
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Figure 29. Main components of the FSS units on the four side views. 
 

A stack of PC104 boards is the core of the FSS unit. The main computer is a 

PC104 ADLS15 PC, Intel® Atom® processor, 1.6 GHz with 2 GB of DDR2-DRAM and 

a 4 GB On-Board SSD. The computer runs a RTAI Linux compiled version of Ubuntu. 

This device is used to command and run the executables during the experiments and is 

connected to all the main actuators and sensors. The PC104 stack includes a serial-port 

board with nine RS232/485 ports used to connect the on-board PC with several devices 

such as the fiber-optic gyroscope, the power board and the docking electro-magnets. The 

solenoid valves of the thrusters and of the air bearings are controlled by the PC through a 

20SPST PC104 relay-board.  

The stereovision is powered and streams the images through a WDL Systems 

Fire-wire PC104+ board connected to the PC. The Fire-wire board has two channels and 

a transfer rate of 400 Mbit/sec. 
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Figure 30. Representation of the hovering and propulsion system. The air flow is 
represented with yellow arrows. 
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Figure 31. Schematic of all the components of the compressed-air hovering and 
propulsion system of the FSS floating unit. 

 
Other electronic components are the DLINK wireless routers for the Wi-Fi 

network connection and the pressure transducers, mounted downstream with respect to 

the propulsion and floating systems’ regulators, to calibrate and control the output 

pressure. The fourth generation FSS units are also provided with an electronic on-board 

scale that displays the weight of the high pressure tank, providing an estimate of the 

consumption of compressed air. An Android tablet mounted on the side of the FSS units 

is used as secondary wireless control device, used mainly to stream videos and connect 

with the Go-Pro Cameras. Future use of the tablet includes use as a portable control unit 

for the Ubuntu terminal and as an additional camera for the docking phase. 
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Figure 32. Schematic of the FSS unit electronic system. 
 
 

c. On-board Sensors 

The units are provided with a PointGrey BumbleBee XB3 BBX3 stereovision 

camera used to retrieve the input images for the vision algorithm. The camera 

specifications are provided below [64]: 

• Color Version:  Mono 
• Focal Length/FOV: 3.8 mm, 66-deg HFOV 
• Resolution:  1.3 Megapixels 
• Imaging Sensor: Sony ICX445, 1/3″, 3.75 µm 
• Imaging Sensor Out: 1280×960 at 16 FPS 
• Digital Interface: 2×9-pin IEEE-1394b for camera control and video 

data transmit 
• Transfer Rates: 400 Mbps 

An image of the camera is provided in Figure 33. 
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Figure 33. Point Grey Bumblebee stereovision camera, from [64]. 
 

The units are also provided with a DSP-3000 fiber optic gyroscope from KVH. 

The fiber optic gyroscope provides angular rate information with a bias of 20 degrees per 

hour and a linearity of 500 ppm (parts per million) [65]. 

An image of the fiber-optic gyroscope is provided in Figure 34. 

 
Figure 34. Fiber-optic gyroscope DSP-3000 from KVH [65]. 

Future experiments will include proximity data from the Hokuyo Laser Scanner 

[66] (shown in Figure 35) and the Leap-motion Infrared Scanner [67] (shown in Figure 

36) to improve target range estimation during docking and proximity operations. The 

integration of these two sensors is still in development stage. 
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Figure 35. Hokuyo laser scanner, from [66]. 

  
Figure 36. Leap Motion, from [67]. 

5. FSS Software 

The GN&C algorithms that control the FSS units are mostly developed and 

compiled in MATLAB/Simulink. A repository of RTAI Linux compatible Simulink 

blocks for the actuation, UDP streaming and sensors interface were developed at the 

Spacecraft Robotics Laboratory [62] and used in all the FSS test-bed experiments and 

upgrades. The latest version of the general Simulink model used on the FSS to compile 

the real-time executables are described in this section. 

Each Simulink model has at least five main blocks, representing the basic tasks of 

the executable (Input Sensors, State Estimator, Guidance, Actuator and Telemetry). The 

blocks are collected into Atomic blocks that isolate the sampling time of each task and 

provide multithreading capabilities to the executable. With the implementation of Atomic 

Blocks, the model provides the processor with defined rates and tasks priorities that are 

used to reallocate computational load. Multithreading solutions were investigated to 
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overcome the problem of high computational demanding tasks, like optimal guidance and 

image processing.  

a. Main Model 

In the standard algorithm developed, the main model connects together a total of 

six atomic blocks. The model represents the logic connections between Sensing, 

Kinematics, Estimation and Guidance. All the data is transmitted between the blocks 

through buses, which allows indexed data on only one line, making the model faster, 

better organized and easier to read.  

An important part of this work includes the research on Atomic blocks 

implementation. The research was based on a literature review and on hardware 

experiments to prove the feasibility and the performance of the algorithm with 

multithreading capabilities.  

In order to make the model able to run in multithreading, each block must comply 

with the following requirements: 

• The blocks have to be contained in an Atomic block. 
• The Atomic blocks must be function-call generated blocks. 
• The function-call generator must specify the sampling rate of the block; 

larger sample times automatically means lower priority. 
• All the inputs of the Atomic blocks must pass through a rate transition 

block. 
• No triggers, clocks, Go-To, From or other Simulink sources can be used in 

the Atomic blocks. 

A screenshot of the full model is provided in Figure 37. 
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b. Sensor Package 

The sensor package can work in either real mode or simulated mode. The real 

mode runs two S-function blocks to receive data from the fiber-optic gyroscope and from 

the VICON camera system. The simulated mode simulates attitude and position data and 

noise. The simulated data is necessary for the implementation and debugging phase of the 

guidance algorithm. The data is collected in a bus connection that provides machine time, 

VICON time and position of the FSS units.  

c. State Estimator 

The state estimator uses the measurement information and the impulse values 

from the actuator package to compute the state vector. The computation uses a discrete 

Kalman filter to compute a state vector robust to sensor measurements losses and errors. 

d. Guidance Block 

In the guidance block, the information from the state estimator and from the target 

package are used to compute the forces and torques required in order to accomplish the 

tasks of the algorithm. A description of specific guidance logic is beyond the scope of 

this work. Some of the most significant guidance and control logic tested and 

implemented on the FSS are listed in Table 4. 

 
Table 4. List of the main guidance logic implemented on the FSS. 

Guidance Algorithms  
Linear quadratic regulator (LQR) 

Inverse dynamics (ID) 
Inverse dynamics in virtual domain (IDVD) 

Proportional-integral-derivative (PID) 
Artificial potential function (APF) 

 

e. Actuator Package 

The input of the actuator package is the time-history of the forces and torques 

requested by the guidance block. These values pass through a Schmitt trigger and a pulse-

width modulator block to convert the force commanded by the continuous guidance 
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algorithm into discrete aperture time intervals. The length of the time intervals is a 

function of the minimum actuator aperture time and the thrust of the propulsion system. 

The block is also provided with an S-function to communicate with the PC104 relay 

board. The S-function is used to activate the solenoid valves of the thrusters and of the air 

pads. 

f. Variable Collect and Send 

This atomic block saves all the data that is exchanged between the atomic blocks 

that pass through the buses. The data is also streamed in real time to the telemetry 

computer and to the other floating units. The UDP connection is obtained through a 

custom S-function compatible with the RTAI compiler. 

g. Target Package 

The target package uses a receiver S-function to retrieve the state vector of other 

FSS units. The state vector is used by the guidance block to compute rendezvous, 

docking and collision avoidance maneuvers.  

B. EXPERIMENTS AND RESULTS 

Several experiments have been conducted in order to test and calibrate the algorithm. 

In this section the experiments are classified into three groups: 

5. Test Videos: Test and calibration of the algorithm performed on sample 
videos. 

6. NASA Videos: Calibration of the algorithm on the high quality on-orbit 
videos provided by NASA 

7. Live Target: The inputs of the algorithm are live images of a physical 
moving object. 

All these experiments are described in the following subsections.  

1. Test Videos  

In the first phase of experiments, a series of tests were performed running the 

algorithm on a desktop computer and using test videos as inputs. This experimental setup 
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was necessary to calibrate the algorithm before using live-stream images. The use of 

computer rendered and recorded videos allowed comparison of the algorithm setup for 

the same sequence of frames. The test videos experiments were classified according to 

the group of functions tested.  

a. Detection and Tracking Calibration 

The first group included a test of the initialization detection and tracking. The 

algorithm must be able to remove the background, detect the target, initialize a ROI and 

track the features to update the ROI location and dimensions. Three videos were used to 

test these functions: 

1. A computer rendered spacecraft maneuver with Earth spinning in the 

background and with artificially simulated trajectories and reflections.  

2. Inverted time-lapse of one of the Orbital Express maneuvers. 

3. Inverted time-lapse of Cygnus maneuvers in proximity of the ISS. 

Specifications of the videos and main initialization setup used to obtain the best 

performance are provided in Table 5. 

Sequences of frames from the abovementioned experiments are provided in 

Figure 38, Figure 39 and Figure 40, where the green dots indicate Harris features, the red 

dots indicate KLT tracked features and the yellow box indicates the limits of the ROI. 

The main calibration differences are the reduction of the KLT ROI dimensions in 

video 2, the activation of the background subtraction in video 3, and the different values 

for the Harry quality threshold in all three experiments. 

In video 2 the dimensions of the ROI generated from the KLT and the KLT 

minimum discarding distance were reduced. This modification was necessary to reduce 

the probability of detecting background features more like the target than in the other 

videos.  
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Table 5. Detection and tracking calibration values. 

 Video 1 Video 2 Video 3 
Video Name Computer-Rendered 

Satellite Maneuver  
Orbital Express 
Docking 

Cygnus approach to 
ISS 

Frame Rate 24 fps 10fps 29 fps 
Resolution 960×540 318×316 480×480 
Number of frames 300 140 179 
Compression avi avi avi 
Background 
Subtraction 

Not Active Not Active Static Background 
Subtraction 

Detector Harris Corners Harris Corners Harris Corners 
Harrys stronger 
features 

100 100 100 

Harrys corner 
quality 

0.05 0.48 0.07 

ANMS Not Active Not Active Not Active 
Blob length 100 pixels 100 pixels 100 pixels 
Blob sigma 6 6 6 
Blob-ROI base 
dimension 

20 pixels 20 pixels 20 pixels 

Tracker KLT KLT KLT 
KLT discard 
distance 

20 pixels 15 20 pixels 

KLT-ROI base 
dimension 

50 pixels 40 50 pixels 

 

In video 3 the low or null relative motion with the background objects allows 

automatic removal of most of the background features in the initialization phase, such as 

the Earth, the ISS Robotic Arm and some visible ISS body features. 

From Table 5, we note notice that in video 1, the computer rendered video, the 

algorithm recognizes corners with a low Harris corner quality threshold, while the real 

videos require higher quality threshold to recognize the artificial features from the 

background. In order to demonstrate a correlation between the Harris threshold required 

and the quality of the image, an additional test was necessary. 
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Figure 38. Sequence of frames from the detection and tracking test on video 1.  

Harris corner features are represented in green, KLT tracked features  
in red and the ROI is the yellow square. 
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Figure 39. Sequence of frames from the detection and tracking of video 2.  

Harris corner features are represented in green, KLT tracked features in  
red and the ROI is the yellow square. 

 
Video 1 was degraded to the same resolution and frame rate of Video 2, keeping 

all other parameters unchanged. The results showed that the reduction in frame rate and 

resolution do negatively affect the detection as expected, requiring a higher Harris 

threshold to filter non-artificial features. 
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Figure 40. Sequence of frames from the detection and tracking of video 3.  

Harris corner features are represented in green, KLT tracked features in  
red and the ROI is the yellow square. 

 

b. Epipolar Transformation Test 

The epipolar algorithm was first tested and corrected with the MATLAB 

computed array of coordinates generated with the code provided in Section B of the 

Appendix. The code generates a cloud of points rigidly translating and/or rotating 
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according to the user inputs. The output simulates the array of coordinates generated with 

a tracker.  

A second phase of the test was based on computer rendered videos of a generic 

3D satellite used to simulate simple linear motion and rotations along one axis per time. 

During the tests, this simulated satellite was detected and tracked by the algorithm and 

the array of coordinates of tracked points sent to the epipolar function. The motion of the 

six cases tested is indicated with an arrow in Figure 41.  

 
Figure 41. The four test cases to verify the epipolar transformation algorithm. 

 

The first algorithm tested was the linear eight-point algorithm, described in 

Section IV. This algorithm was unable to provide a unique solution on the computer 

rendered video. When the features are quasi-planar on the z -axis (axis orthogonal to the 
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camera plane), the rank of the matrix X is smaller than eight, and the estimation remains 

undetermined. 

The rendered video has a high frame rate compared to the motion. This feature 

improves the performance of the tracking algorithm but reduces the displacement 

between matched-features. The linear epipolar algorithms are negatively affected by this, 

as mentioned in Section IV. 

A rendered video was created to test the linear algorithms with the rotation and 

translation of a group of shapes designed to enhance parallax and features difference in 

depth. Some frames are provided in Figure 42. 

It is safe to assume quasi-planarity and continuous motion for most of the features 

analyzed in this work. Indeed, most of the features on artificial satellite lay on 

coordinates with depth dimensions small with respect to the other parameters involved, 

like the trajectory length and the distance between the camera and the target. 

Furthermore, most of the space proximity maneuvers are performed at low relative 

velocities to reduce risks of collision, fuel consumption and other possible docking 

problems. For these reasons most of the testing and development was focused on the use 

of the continuous planar four-point algorithm. 

The four-points algorithm provides two possible velocity solutions for each time 

interval. Future work should be dedicated to implementing a Kalman filter that 

autonomously selects the most valid solution and corrects estimation errors. The time-

history of the two solutions computed by the epipolar function for each case are provided 

in Figure 43, Figure 44, Figure 45, Figure 46, Figure 47 and Figure 48. From these 

figures, it is possible to see that only cases 1, 2 and 6 provide the expected results, while 

the curves obtained from the other cases clearly do not represent the dynamics simulated. 

The algorithm is able to detect and correctly estimate linear velocities on the axes 

of the 2D image plane, x and y, and the angular velocity along the perpendicular, z. The 

angular velocities estimated in the x and y-directions seem to be coupled with each other, 

while the values of the linear velocity in the z-direction are scaled down and almost 

completely covered by error noise. A sufficient number of valid features are tracked, and 
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the optical flow measurements are correct. Nevertheless more work is required to detect 

the error in the algorithm that causes these effects. 

 
Figure 42. Three frames representing the rotation and translation of a group of 

computer rendered objects created to test the epipolar transformation reducing planarity 
and increasing parallax of the features. 
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Figure 43. Time-history of linear and angular velocity for the test case 1 where the 

target is only translating along the y-axis. 

 
Figure 44. Time-history of linear and angular velocity for the test case 2 where 

the target is only translating along the x-axis. 
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Figure 45. Time-history of linear and angular velocity for the test case 3 where the 

target is only translating along the z-axis. 

 
Figure 46. Time-history of linear and angular velocity for the test case 4 where the 

target is only rotating along the y-axis. 
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Figure 47. Time-history of linear and angular velocity for the test case 5 where 

the target is only rotating along the x-axis. 

 
Figure 48. Time-history of linear and angular velocity for the test case 6 where the 

target is only rotating along the z-axis. 
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Results and observations for each test are summarized in Table 6. 

 

Table 6. Description of results for the Epipolar analysis on the six cases. 

TEST 
CASE 

Observations Outcome 

1 The algorithm is able to estimate the translation along the y-axis. 
Solution 2 shows some noise, but the results are consistent with the 
simulated maneuver. 
 

Success 

2 The algorithm is able to estimate the translation along the x axis. 
Solution 2 shows some noise, but the results are consistent with the 
simulated maneuver. 
 

Success 

3 The algorithm does not detect the translation along the z-axis. This 
behavior may be caused by an error in the code.  
 

Fail 

4 The algorithm interprets the rotation along the y-axis as a couple 
translation along the x and the y-axes. This behavior may be caused 
by an error in the code. 
 

Fail 

5 The algorithm interprets the rotation along the x-axis as a couple 
translation along the x and the y-axes. This behavior may be caused 
by an error in the code.   
 

Fail 

6 The algorithm is able to estimate the translation along the y-axis. 
Solution 2 shows some noise, but the results are consistent with the 
simulated maneuver. 
 

Success 

 

c. Stereovision Algorithm Test 

A first test of the stereovision algorithm was implemented using computer 

rendered stereo images in order to demonstrate the method before using physical targets. 

The video is identical to video 1, the computer-rendered satellite maneuver, with the 

addition of another virtual camera in the blender model necessary to have 3D stereo 

displacement in the images of the target. The graphs of the birds-eye view simulated 

trajectory, the estimated and simulated distance and the stereovision estimation error are 

provided in Figure 49. 
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Figure 49. Birds-eye view and stereovision distance estimation results from the test 

on the computer rendered video. 
 

In the graphs of Figure 49 it is possible to see the correlation between quality in 

estimation and distance. As expected, estimation errors are larger when the target is still 

too far away to provide good features to track. 
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2. NASA Videos  

The NASA videos were used to calibrate and validate the detection and the 

tracking settings of the algorithm. The properties of the videos provided by NASA and 

the calibration values used in the algorithm are provided in Table 7, Table 8, Table 9, 

Table 10, Table 11 and Table 12. The information tables are followed by detailed 

descriptions of the detection and tracking performance. 

In all videos the targets were successfully detected and tracked, but different 

initialization settings were used. One important difference is the frame rate. In all videos 

it was possible to reduce the frame rate without losing detection or tracking performance, 

but some videos required higher frame rates than others because of the fast repositioning 

of the camera and not due to the orbital maneuver velocity.  

Another important difference is how the background subtraction is initialized. No 

subtraction was necessary in videos with only Earth or open space as background. In 

videos with static features or obstructed areas, the use of the static background 

subtraction was successful. In video 3 and 4, manually selected ROIs were used. This 

method reduces the dimensions of the image only for the first detection, excluding 

regions that are known to be obstructed. Further work can be dedicated to improve this 

technique creating automatic known-feature recognition extraction and matching in order 

to detect and recognize which features and regions to exclude.  

The results of these experiments are summarized in Table 13, while some 

significant frames are shown in the images provided from Figure 50 to Figure 64.  
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Table 7. Video 1 properties and calibration values. 

Video Name Video 1 (757771) 
Description ISS Expedition 24, Soyuz TMA-19 relocation from the Zvezda 

Service Module (SM) and docking to the Rassvet MRM-1 Module 
GMT Day 179, 2010 
Frame Rate 30 fps (reduced to 0.3 fps) 
Resolution 720×480 pixels 
Number of frames 16000 (reduced to 160 frames) 
Compression mp4 
Background 
Subtraction 

Not Active 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.01 

Update Period every 16.6 seconds (equivalent to 500 frames on the original video 
and 5 frames on the reduced video) 

ANMS Not Active 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

20 

Tracker KLT 
KLT discard 
distance 

20 

KLT-ROI base 
dimension 

50 
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Table 8. Video 2 properties and calibration values. 

Video Name Video 2 (767109) 
Description STS-135 R-bar Pitch Maneuver (RPM) and rendezvous OPS 
GMT Day 191, 2011 
Frame Rate 30 fps (reduced to 0.3 fps) 
Resolution 720×480 pixels 
Number of frames 18000 (reduced to 180 frames) 
Compression mp4 
Background 
Subtraction 

Not Active 

Detector Harris 
Harrys stronger 
features 

300 

Harrys corner 
quality 

0.005 

Update Period every 16.6 seconds (equivalent to 500 frames on the original video 
and 5 frames on the reduced video) 

ANMS Active 
ANMS radius 10 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

30 

Tracker KLT 
KLT discard 
distance 

40 

KLT-ROI base 
dimension 

60 
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Table 9. Video 3 properties and calibration values. 

Video Name Video 3 (884887) 
Description ISS Expedition 29, Progress 45P docks to the ISS 
GMT Day 306, 2011 
Frame Rate 30 fps (reduced to 0.3 fps) 
Resolution 720×480 pixels 
Number of frames 19500 (reduced to 195 frames) 
Compression mp4 
Background 
Subtraction 

Initial ROI manually selected 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.01 

Update Period every 16.6 seconds (equivalent to 500 frames on the original video 
and 5 frames on the reduced video) 

ANMS Not Active 
ANMS radius n\n 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

20 

Tracker KLT 
KLT discard 
distance 

20 

KLT-ROI base 
dimension 

50 
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Table 10. Video 4 properties and calibration values. 

Video Name Video 4 (776046) 
Description ISS Expedition 34, Progress 50P tracking, rendezvous, and docking 

to the ISS 
GMT Day 042, 2013 
Frame Rate 30 fps (reduced to 1.2 fps) 
Resolution 720×480 pixels 
Number of frames 36861 (reduced to 1474 frames) 
Compression mp4 
Background 
Subtraction 

Initial ROI manually selected 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.01 

Update Period every 4.16 seconds (equivalent to 125 frames on the original video 
and 5 frames on the reduced video) 

ANMS Not Active 
ANMS radius n\n 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

20 

Tracker KLT 
KLT discard 
distance 

20 

KLT-ROI base 
dimension 

50 
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Table 11. Video 5 properties and calibration values. 

Video Name Video 5 (757769) 
Description ISS Expedition 24, Soyuz TMA-19 relocation from the Zvezda 

Service Module (SM) and docking to the Rassvet MRM-1 Module 
GMT Day 179, 2010 
Frame Rate 30 fps (reduced to 3 fps) 
Resolution 720×480 pixels 
Number of frames 28000 (reduced to 2800 frames) 
Compression mp4 
Background 
Subtraction 

Static Background Subtraction 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.01 

Update Period every 4.16 seconds (equivalent to 50 frames on the original video 
and 5 frames on the reduced video) 

ANMS Not Active 
ANMS radius n\n 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

15 

Tracker KLT 
KLT discard 
distance 

15 

KLT-ROI base 
dimension 

30 
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Table 12. Video 6 properties and calibration values. 

Video Name Video 6 (765734) 
Description View from the CBCS CAM as STS-134 rendezvous and docks with 

the ISS 
GMT Day 179, 2010 
Frame Rate 30 fps (reduced to 1.2 fps) 
Resolution 720×480 pixels 
Number of frames 36861 (reduced to 1474 frames) 
Compression mp4 
Background 
Subtraction 

Static Background Subtraction 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.03 

Update Period every 4.16 seconds (equivalent to 125 frames on the original video 
and 5 frames on the reduced video) 

ANMS Not Active 
ANMS radius n\n 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

10 

Tracker KLT 
KLT discard 
distance 

10 

KLT-ROI base 
dimension 

20 
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Table 13. Description of the performances of the algorithm applied to the 
NASA videos   

 Results description and observations 
Video 1 The Algorithm is able to track reliably the Soyuz also at very low frame 

rates. The target is not well illuminated and most of the features tracked 
are the external edges of the Soyuz, which could be a challenge for a 
pose estimator. 

Video 2 The Maneuver of the Shuttle is almost constantly tracked by the 
algorithm. The algorithm loses most of the feature points when the 
Shuttle shows the bottom part almost feature-less.  

Video 3 The Progress is constantly tracked by the algorithm, and the pose 
estimation measures the translation docking maneuver along the z-axis. 
An initial ROI had to be manually selected to start the detection 
excluding known ISS features.  

Video 4 The Progress is tracked in different illuminations and background. The 
algorithm is able to recover the detection when the target is completely 
out of sight or when to camera is repositioned with fast movement. A 
higher frame rate was necessary because of the fast repositioning and 
zooming of the camera. Close to docking two identical spacecraft are 
visible and the ROI expands to include both.  

Video 5 The detection automatically recognizes the target form the ISS features 
through static background subtraction. The Soyuz is reliably tracked 
over different backgrounds, in low luminosity conditions and with a fast 
moving camera. As before higher frame rate was necessary because of 
the fast repositioning and zooming of the camera. Atmospheric features 
affect negatively the tracking for a short amount of time and required an 
increase in Harris corner quality.. 

Video 6 The main challenge of this experiment is that for the entire time the 
camera is obstructed by the docking interface. Changes in illumination, 
aperture and focus cause the loss of the target for few frames, but the 
algorithm is able to recover and reliably track the target docking 
interface for almost the entire maneuver.  
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Figure 50. Frame taken from video 1 while the algorithm is tracking the features 

marked in red. 

 
Figure 51. Another frame from video 1. Because of the change in illumination the 

algorithm tracks only edge features. 
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Figure 52. Also during docking the algorithm tracks only features of the Soyuz on the 

last frames form video 1. 

 
Figure 53. Tracking of the features of the Shuttle with the Earth as background on a 

frame from video 2. 
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Figure 54. The algorithm tracks only a few features when the camera faces towards 

the thermal shields of the Space Shuttle. 

 
Figure 55. View of cluttered features on the progress and obstructions on the edges of 

the image from video 3. 
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Figure 56. The algorithm is able to automatically detect the Progress also in this 

challenging frame where the Earth features spin almost at the same speed as the target 
and have the same luminosity intensity. 

 
Figure 57. Changes in illumination causes the algorithm to lose most of the features 

tracked, but it automatically recovers. 
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Figure 58. The algorithm fully recovers from illumination changes and provides 

strong features and a correct ROI of the target. 

 
Figure 59. When two spacecraft with identical features are close, the algorithm 

expands the ROI to include and track both. This causes also other unwanted features to be 
captured. 
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Figure 60. Detection of a moving target over the static features of the ISS on the 

initial frames of video 5. 

 
Figure 61. The ROI expands over clouds with high defined edges, confused for target 

features and tracked. 
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Figure 62. The static background removal method is able to mask the obstructed 

areas and non-target features. 

 
Figure 63. The algorithm is able to track the features of the target behind the docking 

interface. 
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Figure 64. The target docking interface of video 6 tracked by the algorithm. 

 

3. Live Target 

One of the main goals of this work was to implement the hardware-in-the-loop 

testing capabilities on the FSS test-bed. The artificial vision navigation algorithm can be 

used on the existing guidance models to substitute the attitude and position sensors. The 

VICON system is then used only as ground truth, and the simulation is more challenging 

and realistic. 

The first phase of the hardware implementation was to test the artificial vision 

algorithm on a laboratory desktop computer connected with the stereovision camera 

Bumblebee. This test is required for: 

• The validation of the algorithm using real-time images 
• The calibration of the stereovision function on real features 
• The validation of the detection and tracking functions for different 

illumination conditions. 

The camera was positioned on the side of the FSS flat table at the height of the 

floating units. An image of the setup is provided in Figure 65, where it is possible to see 

the stereovision camera in foreground and the FSS floating unit in the center on the 
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granite floor. In the background, the LED sun simulator and the VICON monitors are 

also visible. 

 
Figure 65. View of the live desktop + live-target experiment setup and the main 

components of the test-bed at the Spacecraft Robotics Laboratory of NPS. 
 

Some MATLAB commands had to be added to the original artificial vision 

algorithm in order to be able to collect the position information from the VICON via 

UDP and to grab images from the stereovision camera. These updates of the algorithm 

are included and commented on in the software version provided in Section A of the 

Appendix. 

The maneuver tested is a planar rendezvous translation towards the camera with 

different spinning velocities in four experiments. The speed is kept almost constant for 

the entire maneuver. The bird’s-eye views of the four maneuvers tested are shown in 

Figure 66. The data of these plots were streamed from the VICON server during the 

experiment and used as ground truth. 
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Figure 66. Bird’s-eye view of the trajectories of the FSS unit in four experiments. 

 

The test-bed was installed in a low-reflective, black walled laboratory in order to 

minimize the number of detectable background features. Some examples of frames 

acquired during tracking are provided in Figure 67. It is possible to see that the only 

background features that have luminosity intensity comparable to the intensity of the 

target features are the VICON cameras and the VICON Computer monitor. These 

background features were manually masked by the algorithm during the detection phase, 

excluding them from the initial ROI. 
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Figure 67. Sequence of frames acquired during one of the experiments on the FSS 

test-bed. The tracked features are marked in red and the detected features in green. 
 

All the calibration setting used on the FSS experiment are provided in Table 14. 

The calibration values are almost identical to the parameters used for most of the real and 

virtual videos. The time history of the distances measured with VICON and estimated 

with the stereovision and the distance error are provided for the four experiments in 

Figure 68, Figure 70, Figure 72 and Figure 74. 

In the results of experiment 1 and 2 it is possible to see that the estimation error 

increases drastically at the end of the rendezvous, when the cameras are too close to the 

target. 

In experiment 3 the target reaches the camera more quickly and when the distance 

is close to zero, the estimation error increases. In Figure 72 the missing values indicate 

infinite or negative range values due to lack of reliable features to match, the spacecraft, 

being too close to the camera. 
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Figure 68. Measured and estimated time-history comparison of the distance between 

camera and target in experiment 1. 
 

 
Figure 69. Zoomed view of the distance-error time history in the first 16 

seconds of experiment 1. 

 

5 10 15 20 25
0

1

2

3

4
Distance vs Time

Time (seconds)

D
is

ta
nc

e 
(m

et
er

s)

 

 

5 10 15 20 25
-2

-1

0

1
Distance Error vs Time

Time  (seconds)

E
rro

r (
m

et
er

s)

 

 

Vicon distance
Stereo estimated distance

Distance error

2 4 6 8 10 12 14 16
-0.5

0

0.5
Distance Error vs Time

Time (seconds)

E
rro

r (
m

et
er

s)

 

 

Distance error



 108 

 
Figure 70.  Measured and estimated time-history comparison of the distance between 

camera and target in experiment 2. 

 
Figure 71. Zoomed view of the distance-error time history in the first 16 

seconds of experiment 2. 
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Figure 72. Measured and estimated time history comparison of the distance 

between camera and target in experiment 3. 

 
Figure 73. Zoomed view of the distance-error time history in the first 16 

seconds of experiment 3. 
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Figure 74. Measured and estimated time history comparison of the distance 

between camera and target in experiment 4. 

 
Figure 75. Zoomed view of the distance-error time history in the first 16 

seconds of experiment 4. 
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Table 14. Detection and tracking calibration values. 

Video Name Live Stream from the Bumblebee Camera 
Description The camera acquires live real-time images of the FSS unit floating 

on the granite floor. Same settings have been used for all 
experiments. 

GMT Day 02/25/2015 
Frame Rate 5 fps  
Resolution 970×720 pixels 
Number of frames 60  
Compression mp4 
Background 
Subtraction 

Initial ROI manually selected 

Detector Harris 
Harrys stronger 
features 

100 

Harrys corner 
quality 

0.05 

Update Period every 1 second 
ANMS Not Active 
ANMS radius n\n 
Blob length 100 
Blob sigma 6 
Blob-ROI base 
dimension 

10 

Tracker KLT 
KLT discard 
distance 

20 

KLT-ROI base 
dimension 

50 

Stereovision 
Update Period 

every 2 seconds 
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VI. CONCLUSIONS 

The tests and the experiments in this thesis were designed to provide the most 

reliable estimation of the performance of the artificial vision algorithm in a generic on-

orbit application in terms of detection, tracking and pose estimation reliability, speed and 

computational load.  

With the videos provided by NASA, the algorithm was shown able to 

autonomously detect and track real spacecraft features in challenging scenarios with 

changes in illumination and background. Furthermore, these tests have shown that similar 

initial parameters can work for a wide variety of on-orbit scenarios, and that acquisition 

rates of 3.0 fps are sufficient for the algorithm to track the target. Another important 

observation is that the video is sensitive to the method used for the background 

subtraction. The implementation of one method versus another drastically improves the 

performance of the initial detection. 

The hardware-in-the-loop experiments for the validation of the artificial vision 

algorithm demonstrated the capability of a real-time stereovision system to reliably detect 

and estimate the distance of an unknown target with spacecraft-like features and 

dynamics in a space-like illumination condition. The target was detected and tracked 

while hovering over the FSS flat floor in a proximity maneuver. The range estimated in 

real-time using the stereovision system was compared with the ground with an average 

error of about 2.5 cm. This average error value was measured from the raw estimation 

within the stereovision range without using Kalman filters or other methods that could 

improve the range estimation. 

An unresolved bug in the algorithm did not allow testing of the epipolar function 

on the hardware-in-the-loop experiments. The function provided only valid linear 

velocities values along the x and y-axis, and angular velocities along the z-axis. Future 

work is required to detect the error in the algorithm and proceed with the epipolar pose 

estimation tests and validation. 
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That passive vision sensing might be an answer for a relatively low cost and 

reliable relative navigation system for space applications was shown. The ability to 

autonomously adapt to a wide range of space scenarios, provide consistent information 

on the target and be implementable in a real-time system was also shown. 

The FSS test-bed developed has shown to partially simulate the space proximity 

maneuvering in terms of dynamics, features and illumination conditions and, therefore, is 

a valid tool for future hardware-in-the-loop experiments. 

A. FUTURE WORK 

The algorithm presented an error in the epipolar function. Detection and 

correction of this error can lead to several experiments on the FSS testbed and on the 

NASA videos to validate the pose-estimation capability of the code. Also, the use of the 

Geometric Transformation function provided by MATLAB can be implemented and 

compared to the epipolar transformation. 

The selection of the initial ROI for non-static backgrounds can be automatized 

and further work is required to improve the optical flow based background subtraction. 

In order to obtain further information on the computational load performance of 

the algorithm on a real-time OS, it would be interesting to compile the algorithm in a 

RTAI executable and implement it on-board the FSS units with limited processing 

capabilities. The algorithm can also be combined in a Simulink block with the pre-

existent validated guidance models and easily implemented in future FSS experiments as 

the main sensor. 

The implementation of a Kalman filter is also strongly suggested since the results 

have shown the presence of non-negligible noise in both the stereovision estimation of 

the range and the epipolar estimation of the velocities. 
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APPENDIX 

A. ARTIFICIAL VISION ALGORITHM 

All the MATLAB scripts of the AViATOR algorithm divided by modules are 

provided in the appendix.  

1. Initializer (initializer.m) 

 
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%AViATOR variables and options initializer 
  
close all 
clear 
  
global videoname Video VideoR SizeIMG BSmode BSrad Hstrongest ... 
    Hquality ANMSSwitch ANMSdistance Blength Bsigma Bnumber Bmode ... 
    BroiDim Xroi ROI Ifirst KLTroi KLTvalue KLTroiDim fl pix Dstereo 
... 
    vpold omegapold Livecam vid 
  
%GENERAL OPTIONS 
  
%these options can be modified to select the input, all the main ... 
%options and calibrate the algorithm to achieve better results 
  
CreateVideo=0 %Enables (1) or Desables (0) Video Recording 
CreateImage=0 %Enables (1) or Desables (0) Video Recording 
Livecam=2 %Selects Video (0) , Webcam (1) or Bumblebee Camera (2)  
LIVEframes=300;% number of frames of LIVE acquisition in frames ... 
               %(frame rate depends on the camera) 
Jump=1; %number of frames to jump to reduce frame rate 
Refreshperiod=10*Jump %Number of frames between one SURF Analysis ... 
                      %and the following one 
ReceiveVicon=0 %Enables (1) or Desables (0) Vicon UDP Receiver                  
%CAMERA OPTIONS 
HFOV=66; %[degrees], Camera Horizontal Field of view 
fl=0.038; %[meters], Camera focal lenght 
Dstereo=0.25; %[meters], distance between stereo cameras 
pix=3.75*10^-6; %[micrometers], square pixels dimension 
%BACKGROUND STATIC REMOVAL OPTION 
BackgroundSub=0; %Enables (1) or Desables (0) Background Subtraction 
BSmode=0;%Selects Background Subtraction Mode (0=Static, 1=OpticalFlow) 
BSrad=50;%radius of masking circle around unwanted features 
%HARRIS OPTIONS 
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Hstrongest=100; %number of strongest Harris points 
Hquality=0.01; %quality of Harris points 
%SURF OPTIONS 
SurfSwitch=0; %Enables (1) or Desables (0) SURF detection 
Sstrongest=50; %number of strongest SURF points 
%ANMS OPTIONS 
ANMSSwitch=0; %Enables (1) or Desables (0) ANMS in Detection 
ANMSdistance=10;% ANMS radius in pixels 
%BLOB OPTIONS 
Blength=100;%length added to Blob Gaussian Distribution 
Bsigma=6;%standard deviation of the Blob Gaussian Distribution 
Bnumber=8;%Number of biggest blobs for ROI detection 
Bmode=1; %selects how to create the ROI starting from the BLOB ... 
         %(1=from biggest blob maxs) 
BroiDim=20;%pixels to add to ROI dimensions (for real videos keep 20) 
%EPIPOLAR TRANSFORMATION 
vpold=[]; %initalizes the linear velocity vector estimation of ... 
          %the epipolar 
omegapold=[];%initalizes the angular velocity vector estimation of ... 
             %the epipolar 
%KLT TRACKING 
KLTroi=1; %Enables (1) or Desables (0) discarding valid points ... 
          %too far from the ROI 
KLTvalue=20;%[pixels] discards distance (for real videos keep 20) 
KLTroiDim=50;%[pixels] lenght to make KLT-ROI bigger ... 
             %(for real videos keep 50) 
%STEREO OPTIONS 
Stereovision=1; %Enables (1) or Desables (0) Stereovision loop 
Stereoperiod=5; %Stereovision update period 
  
%% VARIABLES INITIALIZATION (do not modify) 
  
%this is a list of variables that require to be initialized only once 
  
Detect=0;%flag intializer 
Nsurf=0;%Number of SURF Features Detected 
MODE=0; %Detection=0 KLT=1 STEREO=2 Geometric=3 SURF Check = 4 
N=0; 
Nroi=[0 0]; 
Metric=0; %initializes Max Metric value detected 
Distance=0; %[scaled value] initialization STEREO distance 
STEREOACTIVE=0; %initialization falg 
Record=[];%initialization Distance recording matrix 
oldpointsK=[];%[pixels] array of valid [x y] points collected  
              %in previous frame 
v_tot1=[]; %[meters per frame] epipolar linear velocity Solution 1 
omega_tot1=[];%[radians per frame] epipolar angular velocity Solution 1 
v_tot2=[]; %[meters per frame] epipolar linear velocity Solution 2 
omega_tot2=[];%[radians per frame] epipolar angular velocity Solution 2 
T0_tot=[]; 
ALLpoints_totX=[];%[pixels] array of all KLT [x] points collected ... 
                  %in previous frame 
ALLpoints_totY=[];%[pixels] array of all KLT [y] points collected ... 
                  %in previous frame 
Dst=[];%vector to collect the STEREO distance 
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Zero=zeros(3,1); 
%Background subtraction counter 
count=[1]; 
count2=[1]; 
for l=2:20 
    count=[count,count+1]; 
    count2=[count2,count2-1]; 
end 
counter=[count2,count];%Counter used to track the number of frames 
                       %without detection 
                        
%% INPUT INITIALIZATION AND VIDEO CREATION 
  
%This part of the algorithm starts the acquisition and the recording  
%functionalities. Name of camera devices and name of the video might  
%be changed according to the hardware/software input. 
  
  
if Livecam==0 
%videoname='SatTrasX.avi';%VideoL.avi';%testing Epipolar translation 
videoname='SatRotX.avi';%testing Epipolar rotation 
%videoname='VideoL.avi';%testing Tracking and Stereovision)  
Video = VideoReader(videoname); 
Frame = read(Video, 1);%Retrieve and Convert Frame k 
Ifirst = rgb2gray(Frame); 
SizeIMG=size(Ifirst); 
nframes = get(Video, 'NumberOfFrames'); 
get(Video) 
singleFrame = read(Video, 1); 
elseif Livecam==1 
%cam = webcam('QuickCam Orbit/Sphere MP');%for the LAB COmputer 
cam = webcam('Logitech QuickCam Pro 5000');%for the OFFICE COmputer 
Frame = snapshot(cam); 
Ifirst = rgb2gray(Frame); 
SizeIMG=size(Ifirst);     
nframes=LIVEframes;  
else 
vid = videoinput('pointgrey', 1, 'F7_RGB_1280x960_Mode3'); 
src = getselectedsource(vid); 
vid.FramesPerTrigger = 1; 
vid.ReturnedColorspace = 'rgb'; 
start(vid); 
Frame=getdata(vid); 
%     IIred = Frame(:, :, 1); %camera 1 
%     IIgreen = Frame(:, :, 2); %camera 2 
%     IIblue = Frame(:, :, 3); %camera 3  
Ifirst = Frame(:, :, 3);    
SizeIMG=size(Ifirst);     
nframes=LIVEframes;     
end     
     
if CreateVideo==1 && CreateImage==1 
    writerObj = VideoWriter('Video.avi','Motion JPEG AVI'); 
    %writerObj = VideoWriter('Video2.avi','Uncompressed AVI'); 
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    writerObj.FrameRate=12;%24; 
    open(writerObj); 
end 
  
InitialFrame=1;%24000;%3000; %Starting frame number of the video 
FinalFrame=nframes;      %Final frame number of the video 
LOOP=InitialFrame+1; %Detection Loop 
  
%%Stereovision 
  
%this part initializes the acquisition of the right camera for the 
%stereovision measurements. The acquisition is active only 
periodically. 
%the inputs are either the blender video VideoR.avi (requires to be  
%used in combination with VideoL.avi), or one of the other cameras of 
... 
% the bumblebee stereo system. 
  
if Stereovision==1 && Livecam<2  
videonameR='VideoR.avi'; 
VideoR = VideoReader(videonameR); 
FrameR = read(VideoR, 1); %Retrieve and Convert Frame k 
elseif Stereovision==1 && Livecam==2  
FrameR= Frame(:, :, 1);         
else     
VideoR=Video;     
end 
  
%ROI INITIALIZATION 
  
%For some application Background Subtraction cannot be done ... 
%autmatically, therfore is necessary to select an initial ROI ... 
%to mask the regions with unwanted features. In the general case the 
%intialized ROI is the entire image. 
  
%ROI=[1,1,368,260];%ROI=[480,560,320,160]; Manually selected ROIs 
ROI=[1,1,SizeIMG(2)-2,SizeIMG(1)-2];%Full Image Region of Interest  
Xroi=zeros(2,5);%Region of Interest Box Corners Coordinates 

 

 

2. Main script (MAIN_AViATOR.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
%% AViATOR (ARTIFICIAL VISION ALGORITHM FOR TRACKING ORBITAL ROTATIONS) 
%% 
  
%Main Program 
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%% Description 
  
% 1) Detects moving objects coming from space (black background area) 
using 
% Harris detection, Gaussian Blob and a Region of Interest, discarding 
% fixed objects and background noise (eg Earth). 
  
% 2) Once Detected the ROI becomes an image, where harris is used agian 
to 
% initialize the KLT tracking of points 
  
% 3) KLT points are used for updating the ROI and (for KLT>N) to define 
the 
% geometric transformation for relative frames Camera/Target 
  
% 4) Every 10 steps Surf/Harris points and KLT are taken outside the 
ROI 
% and the ROI is expanded (or reduced) if necessary 
  
% 5) For Every Nframes checks if the stereo would work and then the 
model  
% uses stereo vision matching (and epipolar) to define the distance and  
% rotations of the reference systems. Also a Geometries Measure is 
made. 
  
% 6) For Distance>D2 stereovision is not used and distance is retrieved  
% from geometric measurements  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
close all 
clear 
clc 
initializer  
global Video 
if ReceiveVicon==1 
    UDPTarget=udp('170.160.1.41', 9090,'LocalPort', 9091); 
     
    UDPCamera=udp('170.160.1.41', 9092,'LocalPort', 9093); 
     
     
    TargetGround=[]; 
    CameraGround=[]; 
end     
%% FRAME LOOP (SIMULATES REAL TIME FRAME ACQUISITION) 
for k =InitialFrame:Jump:FinalFrame 
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    k 
    %VICON ACQUISITION 
if ReceiveVicon==1 
    fopen(UDPTarget) 
    fopen(UDPCamera) 
    TargetPosition=str2num(fscanf(UDPTarget)); 
    CameraPosition=str2num(fscanf(UDPCamera)); 
    TargetGround=[TargetGround,TargetPosition]; 
    CameraGround=[CameraGround,CameraPosition]; 
    fclose(UDPTarget) 
    fclose(UDPCamera) 
     
end     
  
     
    if Livecam==0 %Input is a recorder video 
    frame = read(Video, k);%Retrieve and Convert Frame k 
    I1 = rgb2gray(frame); 
    elseif Livecam==1 %Input is a webcam 
    frame=snapshot(cam); 
    I1=rgb2gray(frame); 
    else %Input is the Bumblebee Camera 
    start(vid); 
    frame=getdata(vid); 
    I1 = frame(:, :, 3); 
    end     
    SizeIMG=size(I1); 
     
    Periodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k); 
    %Periodcheck defines the periods for KLT Update 
    Stereocheck=(Stereoperiod*round(double(k)/Stereoperiod)==k); 
    %Stereocheck defines the periods for STEREOVISION Update 
     
    %% PHASE 1: PREPARATION and DETECTION 
    MODE=0; 
     
    if k<LOOP && BackgroundSub==1 
        %if the Background subtraction option is active this part of 
the 
        %code runs the Detection on the preprocessed images on all 
frames 
        %until a target is detected 
         
        framepost = read(Video, k+1);%Retrieve and Convert Frame k 
        Ipost = rgb2gray(framepost); 
        [I2,Detect,ROI]=FUN_BACKGROUNDSUB(I1,Ipost); 
        if Detect==0 
        LOOP=LOOP+1; 
        MODE=1;     
        else  
        MODE=2; 
        [points,ROIh,Xroih,blob]=FUN_DETECTION(I2,ROI,MODE); 
        tracker = vision.PointTracker('MaxBidirectionalError', 1); 
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        initialize(tracker, points.Location, frame);%Initialize KLT 
Parameters IF NO SURF Points have been detected (uses Harris) 
        LOOP=0; 
        oldpointsH=points.Location; 
        ROI=ROIh; 
        Xroi=Xroih; 
        end 
        
    end 
  if k==InitialFrame && BackgroundSub==0 
        %if the Background subtraction option is not active the 
algorithm 
        %starts the detection on the entire image until a target is 
found. 
        %When a target is detected the values of the Detection are used 
for 
        %the initialization of the KLT tracking. 
         
        MODE=5;  
        Detect=1; 
        [points,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE); 
        tracker = vision.PointTracker('MaxBidirectionalError', 1); 
        initialize(tracker, points.Location, frame);%Initialize KLT 
Parameters IF NO SURF Points have been detected (uses Harris) 
        ROI=ROIh; 
        Xroi=Xroih; 
        oldpointsH=points.Location; 
  end 
     
%% PHASE 2: KLT Tracking 
if Detect==1 
    %when a target is detected the KLT is initialized and run. 
Memorization 
    %of the points from previous frames are necessary for the optical 
flow 
    %measurements. 
     
    MODE=3;    
    if size(oldpointsK,1)==0 
    oldpointsE=oldpointsH;  
    oldpointsK=oldpointsH; 
    else 
    oldpointsK=points;     
    oldpointsE=ALLpoints; 
    end 
    [Vpoints,ROIklt,Xroiklt,ALLpoints]=FUN_KLT(tracker,frame,ROI,Xroi); 
    points=Vpoints; 
    %MetricK 
    Xroi=Xroiklt; 
    ROI=ROIklt; 
     
%CONTINUOUS EIGHT_POINT ALGORITHM 
%runs the Epipolar transformation function. In order to avoid errors 
during 
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%the updates, the values during and after the update are discarded with 
%copies of the previous values  
    
[v_a,omega_a,v_b,omega_b,flag]=FUN_EPIPOLAR(ALLpoints,oldpointsE,ROI); 
     
     
 %Discarding the values during and after the period update        
    AfterPeriodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k-
1); 
    %AfterPeriodcheck detects the frame following the Harris Update 
period 
    Periodcheck=(Refreshperiod*round(double(k)/Refreshperiod)==k); 
    %Periodcheck detects the frame of the Harris Update period 
    
    if numel(omega_tot1)==0 || numel(v_tot1)==0  %initialize omega and 
v 
    omega_tot1=[omega_tot1,Zero]; 
    v_tot1=[v_tot1,Zero]; 
    omega_tot2=[omega_tot2,Zero]; 
    v_tot2=[v_tot2,Zero]; 
    elseif AfterPeriodcheck==1 %|| Periodcheck==1  
        %discard the value obtained after the harris update 
    omega_tot1=[omega_tot1,omega_tot1(:,end)]; 
    v_tot1=[v_tot1,v_tot1(:,end)]; 
    omega_tot2=[omega_tot2,omega_tot2(:,end)]; 
    v_tot2=[v_tot2,v_tot2(:,end)]; 
    else 
    omega_tot1=[omega_tot1,omega_a]; 
    v_tot1=[v_tot1,v_a]; 
    omega_tot2=[omega_tot2,omega_b]; 
    v_tot2=[v_tot2,v_b]; 
    end 
  
%LOST TARGET RECOVERY AND PERIOD RESTART 
  
%once the KLT loop is completed the Detection is restarted to update 
the 
%values for the following period. In case the Target is lost during the 
%period or during the update, the full detection restores the ROI to 
the 
%entire image. 
  
    if Periodcheck==1  || size(Vpoints,1)==0 
         
        if size(Vpoints,1)==0 %numel(pointsh.Location)==0 
        ROI=[1,1,SizeIMG(2)-2,SizeIMG(1)-2];%Region of Interest 
        %Xroih=[2 2 SizeIMG(2)-2 SizeIMG(2)-2 2;2 SizeIMG(1)-2 
SizeIMG(1)-2 2 2]; 
        MODE=5; 
        Detect=1; 
        [pointsh,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE); 
        Metric=max(pointsh.Metric); 
        ROI=ROIh; 
        Xroi=Xroih; 
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        else 
        [pointsh,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE); 
        Metric=max(pointsh.Metric); 
        end %  
        if Metric>1*10^(-8) 
            MODE=4; 
            tracker = vision.PointTracker('MaxBidirectionalError', 1); 
            initialize(tracker, pointsh.Location, frame);%Initialize 
KLT Parameters IF HARRIS PARAMETERS HAVE BEEN FOUND 
            oldpointsK=points; 
            points=pointsh; 
        end 
    end 
end 
     
%% PHASE 3: Stereovision 
  
%this part of the code runs the stereovision function and saves a 
record of 
%distances and frame for each stereovision update 
  
if Stereovision==1 && k>InitialFrame 
    if Stereocheck==1 
       [Distance]=FUN_STEREO(ROI,I1,k); 
       Dst=[Distance;k]; 
       Record=[Record,Dst]; 
    end 
end 
  
     
%% PHASE 4: Geometric Estimation     
%    if D>Dgeom 
        %Match features to recognize geometries 
        %GeometricDistance estimation 
%    end 
     
%% PHASE 5: Plotting and recording 
  
%here the Algorithm creates images from the analyzed frames adding in 
Red 
%the KLT tracked points, in Green the Harris Updated corners and in 
Yellow 
%the ROI. The Images are used also for the creation of a video. 
  
       %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
       if CreateImage==1 
       h=figure; 
       imshow(I1), %title('SURF(green)/KLT(red)'); 
       hold on; 
       title(['AVIATOR Video']); 
       plot(Xroi(1,:),Xroi(2,:),'y'); 
       if MODE==2 
           plot(oldpointsH(:,1),oldpointsH(:,2),'b+'); 
       elseif MODE==3 
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           if size(Vpoints,1)>=1 
               plot(ALLpoints(:,1),ALLpoints(:,2),'r+'); 
           end 
       elseif MODE==4 
           if size(points.Location,1)>=1 
               plot(points.Location(:,1),points.Location(:,2),'g+'); 
           end 
       end 
         
        print(h,'-r120','-dbmp','1.bmp'); 
         
%in order to save frames as images uncomment this part 
%         Filename=['Frame',num2str(k),'.bmp'];    
%          print(h,'-r120','-dbmp',Filename); 
  
        img =imread('1.bmp'); 
        if CreateVideo==1 
            writeVideo(writerObj,img); 
        end 
       close all 
        end 
end 
  
save('record.mat') 

 

3. Background Subtraction (FUN_BACKGROUNDSUB.m) 

function [I2,Detect,ROIout]=FUN_BACKGROUNDSUB(I1,Ipost) 
  
%% Background Subtraction Function 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%% INPUTS 
%I1 = (gray scale image) current frame 
%Ipost = (gray scale image) previous frame 
%% OUTPUTS 
%I2 = (gray scale image) preprocessed image (with masked background) 
%Detect = detection status flag (0 no tqarget detected, 1 target 
detected) 
%ROIout = [corner x, corner y, width, legth] (4x1) (pixels)  
         %Region of interest based on unwanted features 
  
%% 
global SizeIMG Ifirst BSmode BSrad Hquality ROI  
  
if BSmode==0 
%% Static Background subtraction  
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%(mask in following frames all regions with features in first frames) 
  
I2=I1; 
Detect=0; 
% identifies not black pixels 
for i=1:SizeIMG(1) 
    for j=1:SizeIMG(2) 
        if Ifirst(i,j)> 2   
            I2(i,j)=1; 
        end 
    end 
end 
  
if max(max(I2))>20 
    Detect=1; 
end 
  
ROIout=ROI; 
else 
     
%% Optical Background subtraction (mask features that do not move) 
I2=Ipost; 
  
BSHquality=0.05; 
%detects unwanted features 
points1=detectHarrisFeatures(Ifirst,'MinQuality',BSHquality);     
points2=detectHarrisFeatures(Ipost,'MinQuality',Hquality);  
pointsLocation1=points1.Location; 
pointsLocation2=points2.Location; 
pointsMetric1=points1.Metric; 
pointsMetric2=points2.Metric; 
%discard points that are in the nighborohood of previously detected 
points 
  
%% static points location filter 
SizePoints1=size(pointsLocation1,1); 
SizePoints2=size(pointsLocation2,1); 
Location=[];%static points 
Metric=[]; 
  
Eliminated=0; 
for m=1:SizePoints2 
    for n=1:SizePoints1 
        Eliminated_n=find(Eliminated==m); 
        if isempty(Eliminated_n) %se non eliminato i 
            if abs(pointsLocation1(n,1)-
pointsLocation2(m,1))+abs(pointsLocation1(n,2)-
pointsLocation2(m,2))<BSrad 
                Eliminated=[Eliminated;m]; 
            end  
        end 
    end 
    if isempty(Eliminated_n) 
    Location=[Location;pointsLocation2(m,1),pointsLocation2(m,2)]; 
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    Metric=[Metric;pointsMetric2(m,:)]; 
    end 
    Eliminated=0; 
end 
SpointsB=struct('Location',Location,'Metric',Metric); 
  
if numel(SpointsB.Location)==0 
    ROIout=ROI; 
    Detect=0;  
else 
    [blob,ROIh,Xroih]=FUN_BLOB(SpointsB); 
    [ Xroiout,ROIout] = 
FUN_ROILIMITER(ROIh(1),ROIh(2),ROIh(3),ROIh(4)); 
    MODE=2; 
    [points,ROIh,Xroih,blob]=FUN_DETECTION(I2,ROIout,MODE); 
    if numel(points.Location)==0 
    Detect=0;  
    else 
    Detect=1; 
    end   
end 
end 
end 
 

 

4. HARRIS Detection (FUN_DETECTION.m) 

function [points,ROIh,Xroih,blob]=FUN_DETECTION(I1,ROI,MODE) 
  
global Hstrongest Hquality ANMSSwitch ANMSdistance  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%Module for Harris Features Detection 
  
if MODE==1 || (ROI(3)<1 && ROI(4)<1) 
points=detectHarrisFeatures(I1,'MinQuality',Hquality);     
else     
points=detectHarrisFeatures(I1,'MinQuality',Hquality,'ROI', ROI); 
end  
if MODE==2 %%%was MODE<=2  
points=points.selectStrongest(1);  
else 
points=points.selectStrongest(Hstrongest);    
end 
  
pointsLocation=points.Location; 
pointsMetric=points.Metric; 
  



 127 

if ANMSSwitch==1 
[points]= anms_fun(pointsMetric, pointsLocation(:,1), 
pointsLocation(:,2), ANMSdistance); 
pointsH=points; 
end 
  
if MODE<=5 
[blob,ROIh,Xroih]=FUN_BLOB(points); %blobs coordinates - points, 
gaussian parameters, image size 
else 
blob=[]; 
ROIh=ROI; 
end 
  
%[ Xroih,ROIh] = FUN_ROILIMITER(ROIh(1),ROIh(2),ROIh(3),ROIh(4)); 
end 
  
  
function [points]= anms_fun(x, x_i, x_j, D) 
%% ANMS FUNCTION 
%reduces the number of Harris detected features in cluttered areas 
%Author: Roberto Cristi, modified by Alessio Grompone 
  
% [y, y_i, y_j]= anms(x_strength, x_i, x_j, D) 
  
% x, y input and output vectors of "strength" 
  
% x_i, x_j, y_i, y_j , input and ouput vectors of 2D coordinates (i,j) 
for 
% associated to each point 
  
% D min distance between points we keep. There is at most one point of 
% strength in any square which is 2D x 2D 
  
A=[x,x_i,x_j]; % create a matrix of [ metric, x position, y position] 
  
%sort the matrix A in function of the metric (strongest first) 
[Z, K]=sort(A(:,1), 'descend');  
Z=A(K,:); 
  
z_x=Z(:,2);  z_y=Z(:,3); 
z_metric=Z(:,1); 
Nsizei=size(K); 
Eliminated=0; 
zx=[]; 
zx_i=[]; 
zx_j=[]; 
for i=1:Nsizei(1) 
    Eliminated_i=find(Eliminated==i); 
    if isempty(Eliminated_i) %se non eliminato i 
        for j=1:Nsizei(1) 
            Eliminated_j=find(Eliminated==j); 
            if isempty(Eliminated_j) %se non eliminato j 
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                if abs(z_x(j)-z_x(i))+abs((z_y(j))-z_y(i))>D   ... 
                        || abs(z_x(j)-z_x(i))+abs((z_y(j))-z_y(i))==0                      
                    Eliminated=[Eliminated]; 
                else  
                    Eliminated=[Eliminated;j]; 
                end 
            end 
        end     
    end 
end 
for i=1:Nsizei(1) 
    Eliminated_i=find(Eliminated==i); 
    if isempty(Eliminated_i) %se non eliminato i 
                    zx=[zx;z_metric(i)]; 
                    zx_i=[zx_i;z_x(i)]; 
                    zx_j=[zx_j;z_y(i)]; 
    end 
end 
Location=[zx_i, zx_j]; 
elements=size(zx); 
elem=elements(1); 
points = cornerPoints(Location,'Metric',zx); 
end 

 

5. BLOB Selection (FUN_BLOB.m) 

function [blob,ROIh,Xroih]=FUN_BLOB(points) 
%% BLOB FUNCTION 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%% INPUTS 
%points = (pixel) [x y] (1,2) Pixel coordinates of the points detected 
  
%% OUTPUTS 
%blob = Matrix of points (Image size) with white blobs  
%ROIh = (pixels) (4x1) Region of interest[corner x, corner y, 
width,length] 
%Xroih = (pizels) [x,y](5x2) Region of Interest Box 4 Corners 
Coordinates 
  
  
  
%% 
global Blength Bsigma SizeIMG Xroi  
Xrois=Xroi; 
SIZE_IMG=[SizeIMG(2),SizeIMG(1)]; 
L=Blength; 
sigma=Bsigma; 



 129 

M=zeros(SIZE_IMG+(2*L+1)); 
% Gaussian Blobs Creation and Filtering 
for n0=1:length(points) 
n=-L:L; 
h1=(1/(sqrt(2*pi)*sigma))*exp(-(n.^2)/(2*sigma^2)); 
hgauss=h1'*h1; 
IJ=round(points.Location(n0,:)); 
K=points.Metric(n0,:); 
%save('blob.mat') 
M(IJ(1):IJ(1)+2*L, IJ(2):IJ(2)+2*L)=M(IJ(1):IJ(1)+2*L, 
IJ(2):IJ(2)+2*L)... 
    +K*hgauss; 
end 
M=M(L+1:SIZE_IMG(1)+L, L+1:SIZE_IMG(2)+L); 
M=sign(M-0.5*max(max(M))); 
  
%Convert to binary (0 and 1 only) 
for i=1:SIZE_IMG(1) 
    for j=1:SIZE_IMG(2) 
        if M(i,j)==-1 
            M(i,j)=0; 
        end 
    end 
end  
  
blob=M; %Matrix image of blobs 
  
[ROIh,Xroih]=roiblob_fun(blob,Xrois);% build ROI from blobs+HARRIS 
  
end 
  
  
%%ROI from BLOB FLUNCTION 
function [ROI,Xroi]=roiblob_fun(blob,Xrois) 
global Bnumber Bmode SizeIMG BroiDim 
  
Xroi=Xrois; 
SIZE_IMG=SizeIMG; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Detects and selects Blob and transforms the index in coordinates 
%detect connected areas (blobs) 
CC = bwconncomp(blob',Bnumber);  
  
index=[]; %index vector of the blobs that we want to include 
Xcoll=[]; 
Ycoll=[]; 
if CC.NumObjects>0 
if Bmode==1 %First frame chose the biggest Blob and Build the ROI   
D=0; 
for i=1:(CC.NumObjects)   
%Choose only the biggest perimeter component 
A=size(CC.PixelIdxList{1,i}); 
if D<A(1)   
D=A(1); %Number of pixels in connected 
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index=i; %Index of the collection 
end  
end 
%linear pixel index to XY converter 
pase=10; 
[X,Y]=indextolinear(CC,D,index,pase); 
%Average Center for Region of Interest ROI 
Xmean=floor(mean(X)); 
Ymean=floor(mean(Y)); 
width=floor(max(X)-min(X))+ BroiDim ; 
height=floor(max(Y)-min(Y))+ BroiDim ; 
  
if width<1 
    width=1; 
end 
if height<1 
    height=1; 
end 
  
Xroi(:,1)=[Xmean-(width/2);Ymean-(height/2)]; 
Xroi(:,2)=[Xmean-(width/2);Ymean+(height/2)]; 
Xroi(:,3)=[Xmean+(width/2);Ymean+(height/2)]; 
Xroi(:,4)=[Xmean+(width/2);Ymean-(height/2)]; 
Xroi(:,5)=[Xmean-(width/2);Ymean-(height/2)];     
  
Xcoll=X; 
Ycoll=Y; 
else 
for i=1:(CC.NumObjects)      
A=size(CC.PixelIdxList{1,i}); 
pase=10; 
[X,Y]=indextolinear(CC,A,i,pase); 
Xmean=floor(mean(X)); 
Ymean=floor(mean(Y)); 
   
%Choose only the blobs within the old ROI 
if Xmean>Xroi(1,1) && Xmean<Xroi(1,3) && Ymean>Xroi(2,1) && 
Ymean<Xroi(2,2) 
Xcoll=[Xcoll,X]; 
Ycoll=[Ycoll,Y]; 
end  
end 
  
%Average Center for Region of Interest ROI 
Xmean=floor(mean(Xcoll)); 
Ymean=floor(mean(Ycoll)); 
width=floor(max(Xcoll)-min(Xcoll))+ BroiDim ; 
height=floor(max(Ycoll)-min(Ycoll))+ BroiDim ; 
  
if width<1 
    width=1; 
end 
if height<1 
    height=1; 
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end 
%save('blob.mat') 
Xroi(:,1)=[Xmean-(width/2);Ymean-(height/2)]; 
Xroi(:,2)=[Xmean-(width/2);Ymean+(height/2)]; 
Xroi(:,3)=[Xmean+(width/2);Ymean+(height/2)]; 
Xroi(:,4)=[Xmean+(width/2);Ymean-(height/2)]; 
Xroi(:,5)=[Xmean-(width/2);Ymean-(height/2)];     
end 
  
Xroi(1,5)=Xroi(1,1); 
Xroi(2,5)=Xroi(2,1); 
  
width=Xroi(1,3)-Xroi(1,1); 
height=Xroi(2,3)-Xroi(2,1); 
  
ROI=[Xroi(1,1),Xroi(2,1),width,height]; 
else 
%Use entire IMage as Region of interest in case of loss 
ROI=[2,2,SizeIMG(2)-2,SizeIMG(1)-2]; 
Xroi=[2 2 SizeIMG(2)-2 SizeIMG(2)-2 2; 
      2 SizeIMG(1)-2 SizeIMG(1)-2 2 2]; 
end 
end 
  
     

6. KLT Tracking  (FUN_KLT.m) 

function [Vpoints,ROIo,Xroio,ALLpoints]=FUN_KLT(tracker,frame,ROI,Xroi) 
  
%% KLT tracker function 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%% INPUTS 
%tracker = initialization structure  
%frame = current frame image (gray image) 
%ROI= (pixels) (4x1) Region of interest [corner x, corner y, 
width,length] 
%% OUTPUTS 
%Vpoints = (nx2) array of valid tracked points 
%ROIo =(pixels) (4x1) Region of interest [corner x, corner y, 
width,length] 
%Xroio =(pizels) [x,y](5x2) Region of Interest Box 4 Corners 
Coordinates 
%ALLpoints = (mx2) Valid and lost points in matching order 
  
%% 
global SizeIMG KLTroi KLTvalue KLTroiDim 
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VpointsROI=[]; 
VpointsOUT=[]; 
KLTmagnitudesROI=[]; 
KLTdirectionsROI=[]; 
Nvpoints2=[0,0]; 
MODE=1; 
  
SIZE_IMG=SizeIMG; 
%provides al KLT tracked points and validity vector 
[KLTpoints, validity] = step(tracker, frame); % 
Vpoints=KLTpoints(validity,:); %filter only valid points 
ALLpoints=KLTpoints; 
  
for i=1:size(ALLpoints,1) 
    if validity(i)==0 
        ALLpoints(i,:)= [0,0]; 
    end 
end 
  
%Remove "Valid" Points that are too far from ROI 
N=size(Vpoints,1); 
if N>0 && KLTroi==1 
    for i=1:N %If inside the input ROI 
        if  Vpoints(i,1)>=Xroi(1,1)-KLTvalue && 
Vpoints(i,1)<=Xroi(1,3)+... 
                KLTvalue && Vpoints(i,2)>=Xroi(2,1)-KLTvalue && ... 
                Vpoints(i,2)<=Xroi(2,2)+KLTvalue 
            VpointsROI=[VpointsROI;Vpoints(i,:)]; 
        end 
    end 
end 
  
Vpoints=VpointsROI; 
  
%% KLT ROI UPDATE 
  
%uses the mean KLT valid points to expand, shrink or translate the ROI 
  
if size(Vpoints,1)>=1 
    %Calculate mean of valid KLT points to shift the old ROI 
    KLTmeanX=mean(Vpoints(:,1)); 
    KLTmeanY=mean(Vpoints(:,2)); 
    %Estimate the dimensions of the new ROI 
    KLTwidth=(max(Vpoints(:,1))-min(Vpoints(:,1)))+KLTroiDim; %For 
ROI(3) 
    KLTlenght=(max(Vpoints(:,2))-min(Vpoints(:,2)))+KLTroiDim;%For 
ROI(4) 
    ROI1=KLTmeanX-(KLTwidth/2); 
    ROI2=KLTmeanY-(KLTlenght/2); 
    [ Xroiout,ROIout] = FUN_ROILIMITER(ROI1,ROI2,KLTwidth,KLTlenght); 
    Xroio=Xroiout; 
    ROIo=ROIout; 
else 
    Vpoints=[]; 
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    Xroio=Xroi; 
    ROIo=ROI; 
     
end 
 

 

7. Epipolar Transformation (FUN_EPIPOLAR.m) 

function 
[v_a,omega_a,v_b,omega_b,flag]=FUN_EPIPOLAR(Vpoints,VpointsOld,ROI) 
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
% From the "Continuous eight-point algorithm" 
% Ref "An Invitation to 3D Vision" Page 151, Algorithm 5.3 
  
  
%% INPUTS 
%Vpoints = (pixels) (nx2) Tracked Ponts coordinates [x, y] in the 
current frame  
%VpointsOld = (pixels) (nx2) Tracked Ponts coordinates [x, y] from 
previous frame  
%ROI= (pixels) (4x1) Region of interest [corner x, corner y, 
width,length] 
  
%% OUTPUTS 
%v_a = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear 
Velocities 
       %for the Solution1 
%omega_a = [wx,wy,wz] (radians/frame)(3x1) Estimated Body Angular 
Velocities 
       %for the Solution1 
%v_b = [vx, vy, vz] (meters/frame) (3x1)Estimated Body Linear 
Velocities 
       %for the Solution2 
%omega_b = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular 
Velocities 
       %for the Solution2 
%flag = (1) debugging flag (1 if are using the epipolar function) 
  
  
%%  
global fl vpold omegapold 
  
focallenght=fl; 
n=size(Vpoints,1); 
X_2Dcamera1=[]; 
X_2Dcamera2=[]; 
%reinitializes just in case KLT doesn't have the same number of matched 
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%points(like when it updates HARRIS). 
vs=zeros(3,3,4); 
omegas=zeros(3,3,4); 
v_a=zeros(3,1); 
omega_a=zeros(3,1); 
v_b=zeros(3,1); 
omega_b=zeros(3,1); 
flag=0;%checks if this function is running or not 
  
%% Check if we are in the same KLT loop form the size of the Valid 
Points 
if n>0 && size(Vpoints,1)==size(VpointsOld,1) && 
((max(abs(Vpoints(:,1)-VpointsOld(:,1)))>0)||(max(abs(Vpoints(:,2)-
VpointsOld(:,2)))>0)) 
    flag=1; 
    %Makes the vector of points xj in the coordinates of page 141 
    for i=1:n 
        if Vpoints(i,1)==0 || VpointsOld(i,1)==0 || Vpoints(i,2)==0 || 
VpointsOld(i,2)==0 
            %discard points that are zero (not valid KLT points) 
            n=n-1;%counter to reduce total number of points 
        else 
            %sets the coordinates frame in the center of the ROI 
            x1=[VpointsOld(i,2)-(ROI(2)+(ROI(4)/2));-
VpointsOld(i,1)+(ROI(1)+(ROI(3)/2));focallenght]; 
            x2=[Vpoints(i,2)-(ROI(2)+(ROI(4)/2));-
Vpoints(i,1)+(ROI(1)+(ROI(3)/2));focallenght]; 
            %collects the coordinates in a (nx2) array 
            X_2Dcamera1=[X_2Dcamera1,x1];%Points on 2D plane Camera 1 
(x z f) 
            X_2Dcamera2=[X_2Dcamera2,x2];%Points on 2D plane Camera 2 
(x z f) 
        end 
    end 
     
    %% Optical flow function (measures the velocities projected on the 
image) 
     
    [u]=FUN_OPTFLOW(X_2Dcamera1,X_2Dcamera2); 
     
    %% Estimate essential vector 
    [vp1,omegap1,vp2,omegap2]=epipolar3(X_2Dcamera1,u,n); 
    %use epipolar1 for the Eight-Point linear Algorithm 
    %use epipolar2 for the Eight-Point continuous Algorithm 
    %use epipolar3 for the Four-Point continuous Algorithm 
     
    %% Collectes the two solutions in two arrays 
    %This parts regroups the solutions based on the proximity with the 
    %previous value 
    if numel(vpold)==0 %need to initialize vpold with the first 
solution 
        vpold=vp1; 
        omegapold=omegap1; 
    end 
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    Dv1=mean(abs(vp1-vpold)+abs(omegap1-omegapold)); 
    Dv2=mean(abs(vp2-vpold)+abs(omegap2-omegapold)); 
    if Dv1<=Dv2 
        v_a=vp1; 
        omega_a=omegap1; 
        v_b=vp2; 
        omega_b=omegap2; 
    else 
        v_a=vp2; 
        omega_a=omegap2; 
        v_b=vp1; 
        omega_b=omegap1; 
    end 
    vpold=(vpold+v_a)/2; 
    omegapold=(omegapold+omega_a)/2; 
end 
end 
 

8. Continuous Eight-Points Algorithm (epipolar1.m) 

 
function [vp1,omegap1,vp2,omegap2]=epipolar1(X_2Dcamera1,u,n) 
  
% Continuous eight-point algorithm 
% Ref "An Invitation to 3D Vision" Page 151, Algorithm 5.3 
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%%INPUTS 
%X_2Dcamera1 = [x,y] (pixels) (nx2) Coordinates of tracked valid points 
%u = [Vx,Vy] (pixel/frame) (nx2) velocities from optical flow 
%n = number of valid points 
  
%OUTPUTS 
%vp1 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear 
Velocities 
       %for the Solution1 
%omegap1 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular 
Velocities 
       %for the Solution1 
%vp2 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear 
Velocities 
       %for the Solution2 
%omegap2 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular 
Velocities 
       %for the Solution2 
%flag = debugging flag (1 if are using the epipolar function) 
  
  
  
global fl SizeIMG 
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vp1=zeros(3,1); 
omegap1=zeros(3,1); 
vp2=zeros(3,1); 
omegap2=zeros(3,1); 
%% Estimate essential vector 
for i=1:n 
    x=X_2Dcamera1(1,i); 
    y=X_2Dcamera1(2,i); 
    z=X_2Dcamera1(3,i); 
    a(:,i)=[u(3,i)*y-u(2,i)*z,u(1,i)*z-u(3,i)*x,u(2,i)*x-
u(1,i)*y,x^2,... 
        2*x*y,2*x*z,y^2,2*y*z,z^2]'; 
    X(:,i)=[a(:,i)]; 
end 
X=X'; 
if rank(X)>=8 
    %For not noisy measurements we want to minimize  X*Es=0 
    [Ux,Sx,Vx]=svd(X); 
    Es1=Vx(:,9); 
    %For noisy measurements we want to minimize ||X*Es||^2=0 
    [Vxn,Dxn]=eig(X'*X,'vector'); 
    Dxmin=min(Dxn); 
    for i=1:size(Dxn,1) 
        if Dxn(i)==Dxmin 
            Es=Vxn(:,i); %Stacked Epipolar Matrix 
        end 
    end 
    % 
    % Es3=lsqlin(X,zeros(n,1)); 
    %         % 
    % Es2=null(X); 
     
    vo=[Es(1);Es(2);Es(3)]; 
    %Es=Es/norm(vo); 
    vo=[Es(1);Es(2);Es(3)]; 
    s_e=[Es(4) Es(5) Es(6) Es(7) Es(8) Es(9)]; 
    s=[s_e(1) s_e(2) s_e(3);s_e(2) s_e(4) s_e(5);s_e(3) s_e(5) s_e(6)]; 
    %Multiply Es with a scalar such that the vector vo becomes unit 
norm 
     
    %% Recover the symmetric epipolar component 
    %s might not be symmetric due to noise, therfore we project it in 
the space 
    %of symmetric epipolar components 
     
    [V1,D]=eig(s,'vector'); 
    [lamb,index]=sort(D,'descend'); 
    Vvect=V1(:,index); 
     
    sigma=[(2*lamb(1)+lamb(2)-
lamb(3))/3;(lamb(1)+2*lamb(2)+lamb(3))/3;... 
        (2*lamb(3)+lamb(2)-lamb(1))/3]; 
    s=Vvect*diag(sigma)*Vvect';%Symmetrized s 
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    %% Recover the velocity from the symmetric epipolar component 
    lambda1=sigma(1)-sigma(3); 
    theta=acos((-sigma(2)/lambda1)); 
    theta2=(theta/2)-(pi/2); 
     
    Ry1=[cos(theta)  0 sin(theta); 
        0           1     0     ; 
        -sin(theta) 0 cos(theta)];%@(theta) 
    Ry2=[cos(theta2)  0 sin(theta2); 
        0           1     0     ; 
        -sin(theta2) 0 cos(theta2)];%@(theta/2)-(pi/2) 
    Rz1=[cos(pi/2) -sin(pi/2) 0; 
        sin(pi/2)  cos(pi/2) 0; 
        0           0        1];%@(+pi/2) 
    Rz2=[cos(-pi/2) -sin(-pi/2) 0; 
        sin(-pi/2)  cos(-pi/2) 0; 
        0          0         1];%@(-pi/2) 
     
    V=Vvect*Ry2';%As the book 
    U=-V*Ry1; 
     
    Siglam=diag([lambda1,lambda1,0]); 
    Sig1=diag([1,1,0]); 
     
    omegas(:,:,1)=U*Rz1*Siglam*U'; vs(:,:,1)=V*Rz1*Sig1*V'; 
    omegas(:,:,2)=U*Rz2*Siglam*U'; vs(:,:,2)=V*Rz2*Sig1*V'; 
    omegas(:,:,3)=V*Rz1*Siglam*V'; vs(:,:,3)=U*Rz1*Sig1*U'; 
    omegas(:,:,4)=V*Rz2*Siglam*V'; vs(:,:,4)=U*Rz2*Sig1*U'; 
     
    %% Recover the velocity from continuous essential matrix 
    vtempold=0; 
    vsolutions=[]; 
    for g=1:4      
        vsolutions=[vsolutions,[vs(3,2,g);vs(1,3,g);vs(2,1,g)]]; 
        vtemp=[vs(3,2,g);vs(1,3,g);vs(2,1,g)]'*vo; 
        if vtemp>vtempold 
            v=[vs(3,2,g);vs(1,3,g);vs(2,1,g)]; 
            omega=[omegas(3,2,g);omegas(1,3,g);omegas(2,1,g)]; 
            vtempold=vtemp; 
        end 
    end 
vp1=v; 
omegap1=omega; 
vp2=[vs(3,2,2);vs(1,3,2);vs(2,1,2)]; 
omegap2=[omegas(3,2,2);omegas(1,3,2);omegas(2,1,2)]; 
  
end 
%save('epipolar1.mat') 
end 
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9. Continuous Four-Points Algorithm (epipolar3.m) 

function [vp1,omegap1,vp2,omegap2]=epipolar3(X_2Dcamera1,u,n) 
  
%% Estimate Epipolar from 4 planar or more values 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%%INPUTS 
%X_2Dcamera1 = [x,y] (pixels) (nx2) Coordinates of tracked valid points 
%u = [Vx,Vy] (pixel/frame) (nx2) velocities from optical flow 
%n = number of valid points 
  
%OUTPUTS 
%vp1 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear 
Velocities 
       %for the Solution1 
%omegap1 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular 
Velocities 
       %for the Solution1 
%vp2 = [vx, vy, vz] (meters/frame) (3x1) Estimated Body Linear 
Velocities 
       %for the Solution2 
%omegap2 = [wx,wy,wz] (radians/frame) (3x1) Estimated Body Angular 
Velocities 
       %for the Solution2 
%flag = debugging flag (1 if are using the epipolar function) 
  
    X=[]; 
    B=[]; 
%% Compute first approximation of the continuous homography matrix 
    for i=1:n 
        % skewsymmetric matrix build 
        x=X_2Dcamera1(1,i); 
        y=X_2Dcamera1(2,i); 
        z=X_2Dcamera1(3,i); 
        skew=[0 -z y;z 0 -x;-y x 0];  
        % X matrix build 
        a(:,:)=kron(X_2Dcamera1(:,i),skew); %kronecher 
        X=[X,a(:,:)]; 
        % B matrix build 
        b=skew*u(:,i); 
        B=[B,b']; 
    end 
    X=X'; 
    B=B'; 
     
    Hls=pinv(X)*B;%Stacked homography matrix not in essential space  
     
    if numel(Hls)==0 
        %initialize the homography matrix not in essential space  
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        Hl=zeros(3,3); 
    else 
        %unstack the homography matrix not in essential space  
        
Hl=[Hls(1),Hls(2),Hls(3);Hls(4),Hls(5),Hls(6);Hls(7),Hls(8),Hls(9)]'; 
    end 
    %% Normalization of the continuous homography matrix 
    [Vl,Dl]=eig(Hl'+Hl);%measure eigenvalues and eigenvectors 
    H=Hl-0.5*Dl(2,2)*eye(3);%Homography Matrix 
     
    %% Decomposition of the continuous homography matrix 
    [V,D]=eig(H'+H); 
    Di=[D(1,1);D(2,2);D(3,3)]; 
    % reorder Eigenvalues and vectors from max to min eigenvalue 
    [lamb,index]=sort(Di,'descend'); 
    V=V(:,index); 
     
    alpha=0.5*(lamb(1)-lamb(3)); 
     
    v1h=0.5*(sqrt(2*lamb(1))*V(:,1)+sqrt(-2*lamb(3))*V(:,3)); 
    N1h=0.5*(sqrt(2*lamb(1))*V(:,1)-sqrt(-2*lamb(3))*V(:,3)); 
    v2h=N1h; 
    N2h=v1h; 
     
    e3=[0,0,1]'; %optical axis 
    Ncheck=zeros(3,1); %initialize Depth constraint check 
     
    %%Compute Solution 1 
    Vd1=sqrt(alpha)*v1h;%Linear Velocity 
    N1=(1/sqrt(alpha))*N1h; 
    omega1=0.5*((H-v1h*N1h')-(H-v1h*N1h')');%Angular Velocity 
Skewsimmetric 
    Ncheck(1)=N1'*e3;%Depth constraint check 
    %%Compute Solution 2 
    Vd2=sqrt(alpha)*v2h;%Linear Velocity 
    N2=(1/sqrt(alpha))*N2h; 
    omega2=0.5*((H-v2h*N2h')-(H-v2h*N2h')');%Angular Velocity 
Skewsimmetric 
    Ncheck(2)=N2'*e3;%Depth constraint check 
    %%Compute Solution 3 
    Vd3=-Vd1;%Linear Velocity 
    N3=-N1; 
    omega3=omega1;%Angular Velocity Skewsimmetric 
    %%Compute Solution 4 
    Vd4=-Vd2;%Linear Velocity 
    N4=-N2; 
    omega4=omega2;%Angular Velocity Skewsimmetric 
     
    %Select Solutions 
     
    if D(1)==0 && D(2)==0 && D(3)==0 
        %if all eigenvalues are zero only one solution exist 
        Vsol1=zeros(3,1); 
        Nsol1=zeros(3,1); 
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        Osol1=H; 
        Vsol2=zeros(3,1); 
        Nsol2=zeros(3,1); 
        Osol2=H; 
        %elseif Vd1==zeros(3,1) || Vd2==zeros(3,1) %|| cross(Vd1,N1)==0 
|| e3'*v==0 %There is a unique solutions 
    elseif Vd1(1)==0 && Vd1(2)==0 && Vd1(3)==0 %|| cross(Vd1,N1)==0 || 
e3'*v==0 %There is a unique solutions 
        %if all linear velocities are zero only one solution exist 
        Vsol1=zeros(3,1); 
        Nsol1=N1; %? 
        Osol1=H; 
        Vsol2=Vsol1; 
        Nsol2=Nsol1; 
        Osol2=Osol2; 
    else 
        %if 4 solutions exist select only the 2 valid solution N'e3>0 
        if Ncheck(1)>0 
            Vsol1=Vd1; 
            Nsol1=N1; 
            Osol1=omega1; 
        else 
            Vsol1=Vd3; 
            Nsol1=N3; 
            Osol1=omega3; 
        end 
        if Ncheck(2)>0 
            Vsol2=Vd2; 
            Nsol2=N2; 
            Osol2=omega2; 
        else 
            Vsol2=Vd4; 
            Nsol2=N4; 
            Osol2=omega4; 
        end 
    end 
     
    vp1=Vsol1; 
    omegap1=[Osol1(3,2);Osol1(1,3);Osol1(2,1)]; 
    vp2=Vsol2; 
    omegap2=[Osol2(3,2);Osol2(1,3);Osol2(2,1)]; 
     
  % save('epipolar3.mat') 
end 
 

 

10. Stereovision Range Estimation (FUN_STEREO_RANGE.m) 

function [Distance]=FUN_STEREO(ROI,I1,k) 
%% Features and Stereo 
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%Subfunction of the AViATOR algorithm, for the detection and matching 
of 
%features on stereo images and estimation of the distance from a 
tracked 
%target. 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
%% INPUT 
%ROI = [corner x, corner y, width, legth] (4x1) (pixels) Region of 
interest 
%I1 = (gray scale image) current frame 
%k = (scalar) current frame number 
%% OUTPUT 
%Distance = (scalar) scaled Distance 
%% 
global fl pix Dstereo Livecam vid experiment %VideoR 
%Cameras Relative Properties 
        MODER=6; 
        if Livecam==0 %Input is a recorder video 
        %frameR = read(VideoR, k);%Retrieve and Convert Frame k 
        %ks=30-k+1; 
        ks=k; 
        
folderR=(['C:\Users\Grompone\Desktop\AViATOR\TEST5_LIVEepipolarEstere\'
,experiment,'\FrameR',num2str(ks),'.bmp']); 
        frameR = imread(folderR); %read(Video, 1);%Retrieve and Convert 
Frame k 
        I1R = rgb2gray(frameR); 
        elseif Livecam==2 %Input is a webcam 
        start(vid); 
        frameR=getdata(vid); 
        I1R = frameR(:, :, 1); 
        end 
         
        I1L=I1; 
        % Find SURF matched points for STEREO COMPARISON 
        points1 = detectSURFFeatures(I1L,'ROI',ROI); 
        points2 = detectSURFFeatures(I1R,'ROI',ROI); 
        [f1, vpts1] = extractFeatures(I1L, points1); 
        [f2, vpts2] = extractFeatures(I1R, points2); 
        indexPairs = matchFeatures(f1, f2, 'Prenormalized', true) ; 
        matchedPoints1 = vpts1(indexPairs(:, 1)); 
        matchedPoints2 = vpts2(indexPairs(:, 2)); 
        PointsL=matchedPoints1.Location; 
        PointsR=matchedPoints2.Location; 
         
        %Cameras Relative Properties 
        pointsL=PointsL; 
        pointsR=PointsR; 
        %fl=0.0038;%Cameras Focal lenght (m) 
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        %we asssume camera 1 in the Inertia Reference frame 
        %we assume only camera rotations along the Z axis 
         
        Xc1=[0;0;0;0;0;0];%Camera position and attitude 1 (X Y Z theta 
phi psi) Inertia Frame 
        Xc2=[Dstereo;0;0;0;0;0];%Camera position and attitude 2 (X Y Z 
theta phi psi) Inertia Frame 
         
        %rotation between camera position 1 and Inertia frame 
        Rc=[1 0 0;0 cos(Xc1(4)) sin(Xc1(4)); 0 -sin(Xc1(4)) 
cos(Xc1(4))]*[cos(Xc1(5)) 0 sin(Xc1(5));0 1 0;sin(Xc1(5)) 0 
cos(Xc1(5))]* [cos(Xc1(6)) -sin(Xc1(6)) 0;sin(Xc1(6)) cos(Xc1(6)) 0; 0 
0 1]; 
        %translation between camera position 1 and Inertia frame 
        Tc=[0,0,0,1]; 
         
        %rotation between camera position 1 and 2 
        R21=[1 0 0;0 cos(Xc2(4)-Xc1(4)) sin(Xc2(4)-Xc1(4)); 0 -
sin(Xc2(4)-Xc1(4)) cos(Xc2(4)-Xc1(4))]*[cos(Xc2(5)-Xc1(5)) 0 
sin(Xc2(5)-Xc1(5));0 1 0;sin(Xc2(5)-Xc1(5)) 0 cos(Xc2(5)-Xc1(5))]* 
[cos(Xc2(6)-Xc1(6)) -sin(Xc2(6)-Xc1(6)) 0;sin(Xc2(6)-Xc1(6)) 
cos(Xc2(6)-Xc1(6)) 0; 0 0 1]; 
        R12=R21'; 
        %translation between camera position 1 and 2 
        T12=[Xc1(1)-Xc2(1); 
            Xc1(2)-Xc2(2); 
            Xc1(3)-Xc2(3)]; 
        Nsp= size(pointsR,1); 
        LL=[]; 
        C=0; 
        d=0; 
        if Nsp>0 
            for i=1:Nsp 
                i=1; 
                % %in meters 
                x1=pointsL(i,:)*pix; 
                x2=pointsR(i,:)*pix; 
                 
                x1=[x1(1);x1(2);fl]; %Point on object (on 2D plane 
Camera 1) (x y f) 
                x2=[x2(1);x2(2);fl]; %Point on object (on 2D plane 
Camera 2) (x y f) 
                 
                x2cross=[0 -x2(3) x2(2);x2(3) 0 -x2(1); -x2(2) x2(1) 
0]; 
                %l1*(x2cross*T21)+(x2cross*R21*x1)=0; 
                C=double(x2cross*R21*x1); 
                d=double(x2cross*T12); %or T21 ? 
                 
                %least squares for Lambda1 determination 
                l1=lsqlin(C,d); 
                LL=[LL,l1]; 
            end 
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        end 
        l1=mean(LL); 
        %Point distance from reference camera 1 
        Z=l1*fl; 
        %Distance=-Z;%in  
        Distance=-Z;%*(80/27.5)/100;%Calibrated Value (in m) 
 

11. Optical Flow Estimation (FUN_OPTFLOW.m) 

function [u]=FUN_OPTFLOW(X_2Dcamera1,X_2Dcamera2) 
  
  
%% Optical Flow measurement 
  
%% Authors 
% Alessio Grompone and Roberto Cristi 
% PI: Marcello Romano 
% Spacecraft Robotics Laboratory, Naval Postgraduate School 2015 
  
  
%%INPUT 
% X_2Dcamera1 = [x y f] (3x1) 2D camera position of points in frame 1  
% X_2Dcamera2 = [x y f] (3x1) 2D camera position of points in frame 2 
  
%%OUTPUT 
% u = [xdot ydot 0] %velocity vector (pixels/frame) 
  
n = size(X_2Dcamera1,2); 
u = zeros(3,n); 
  
for i = 1:n  
u(:,i) = [X_2Dcamera2(1,i)-X_2Dcamera1(1,i);X_2Dcamera2(2,i)-
X_2Dcamera1(2,i); 0]; 
end 
  

12. Computed ROI Limits Validation (FUN_ROILIMITER.m) 

function [ Xroiout,ROIout] = FUN_ROILIMITER(ROI1,ROI2,ROI3,ROI4) 
  
global SizeIMG  
%ROILIMITER_FUN Summary of this function goes here 
%  Linits the ROI within the image 
%used for the blob, the klt and for the surf functions 
  
SIZE_IMG=SizeIMG; 
%Move ROI with KLT tracked mean 
  width=ROI3; 
  height=ROI4; 
  Xmean=ROI1+(width/2); 
  Ymean=ROI2+(height/2);     
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Xroi(:,1)=round([Xmean-(width/2);Ymean-(height/2)]); 
Xroi(:,2)=round([Xmean-(width/2);Ymean+(height/2)]); 
Xroi(:,3)=round([Xmean+(width/2);Ymean+(height/2)]); 
Xroi(:,4)=round([Xmean+(width/2);Ymean-(height/2)]); 
Xroi(:,5)=round([Xmean-(width/2);Ymean-(height/2)]); 
%limit the ROI within the image 
if Xroi(1,3)>SIZE_IMG(2)-1  
    Xroi(1,3)=SIZE_IMG(2)-1; 
    Xroi(1,4)=SIZE_IMG(2)-1; 
end 
if Xroi(2,2)>SIZE_IMG(1)-1 
    Xroi(2,2)=SIZE_IMG(1)-1; 
    Xroi(2,3)=SIZE_IMG(1)-1; 
end 
if Xroi(1,1)>SIZE_IMG(2)-2  
    Xroi(1,1)=SIZE_IMG(2)-2; 
    Xroi(1,2)=SIZE_IMG(2)-2; 
end 
if Xroi(2,1)>SIZE_IMG(1)-2 
    Xroi(2,1)=SIZE_IMG(1)-2; 
    Xroi(2,4)=SIZE_IMG(1)-2; 
end 
if Xroi(1,1)<=1 
    Xroi(1,1)=1; 
    Xroi(1,2)=1; 
end 
if Xroi(2,1)<=1 
    Xroi(2,1)=1; 
    Xroi(2,4)=1; 
end 
if Xroi(1,3)<=2 
    Xroi(1,3)=2; 
    Xroi(1,4)=2; 
end 
if Xroi(2,2)<=2 
    Xroi(2,2)=2; 
    Xroi(2,3)=2; 
end 
Xroi(1,5)=Xroi(1,1); 
Xroi(2,5)=Xroi(2,1); 
  
Xroiout=Xroi; 
  
width=Xroi(1,3)-Xroi(1,1); 
height=Xroi(2,3)-Xroi(2,1); 
  
ROIout=[Xroi(1,1),Xroi(2,1),width,height]; 
  
end 
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13. Image Indexing Transformation (indextolinear.m) 

function[X,Y]=indextolinear(CC,A,i,pase) 
Y=[]; 
X=[]; 
for j=1:pase:A %I am analyzing only 1/50 of the pixels involved 
index1=CC.PixelIdxList{1,i}(j,1); 
x=floor(index1/CC.ImageSize(1)); 
y=floor(index1-x*CC.ImageSize(1)); 
Y=[Y,y]; 
X=[X,x]; 
end 

 

B. MATLAB RIGID CLOUD 

Below is provided the code used to create a 3D rigid cloud of points rotating and 

translating according to the user inputs. The points generated have been used to test the 

Epipolar function during the development phase 

 
%Grompone Alessio 07/09/2014 
function 
[CameraPoints1,CameraPoints2,fl,XwCamera1,XwCamera2]=PointsCreatorBox(B
oxState1,BoxState2,fl) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Initialization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
rad=-45*(pi/180);%degrees to radians 
%BoxState1=[0,0,20,0,0,0];%[X,Y,Z,phi,theta,psi] Initial condition 
%BoxState2=[30,0,20,0,rad,0];%[X,Y,Z,phi,theta,psi] Final condition 
SizeIMG=[800,600]; 
%fl=1; %Camera Focal correction 0.0038;(m) 
  
FOVx=2*atan2(SizeIMG(1)/2,fl); 
FOVy=2*atan2(SizeIMG(2)/2,fl); 
FOV=[FOVx,FOVy]; 
  
%intrinsic parameters 
S=[SizeIMG(1) 0 SizeIMG(1)/2; 
   0 SizeIMG(2) SizeIMG(2)/2; 
    0 0 1]; 
FI=[fl 0 0; 
    0 fl 0; 
    0 0 1]; 
PI=[1 0 0 0; 
    0 1 0 0; 
    0 0 1 0]; 
Xw1=zeros(4,1);  
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CameraPoints1=[]; 
CameraPoints2=[]; 
Xw3D=[]; 
X3D=[]; 
XwCamera1=[]; 
XwCamera2=[]; 
X_2Dcamera1=[]; 
X_2Dcamera2=[]; 
  
  
%The reference sistem has X along the camera, Z towards the camera view 
and 
%y towards down in the image plane 
  
CameraState1=[0,0,0,0,0,0];%[X,Y,Z,phi,theta,psi] 
CameraState2=[0,0,0,0,0,0]; 
  
CameraOnOff=1; %shows the relative 3D camera position in the plots 
(remove=0) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Projection of 20 points of an object on two cameras planes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Body Points in the inertial frame 
%the order of the box points is important for plotting purposes 1234 on 
first 
%plane 5678 on second plane 
  
%Boxes 
% Box1=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-3]; 
% Box2=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-
3]./2.5; 
%Irregular shapes 
% Box1=[-2,3,3;3,1,3;5,-3,2;-3,-3,3;-3,3,-3;4,3,-3;2,-3,-3;-1,-3,-3]; 
% Box2=[-3,4,3;3,3,2;3,-3,3;-3,-3,3;-3,3,-3;3,5,-3;3,-2,-3;-3,-4,-
3]./2.5; 
  
%Three Boxes 
Box1=[-2,5,3;5,5,3;5,-2,3;-2,-2,3;-2,5,-3;5,5,-3;5,-2,-3;-2,-2,-3]; 
Box2=[-3,3,3;3,3,3;3,-3,3;-3,-3,3;-3,3,-3;3,3,-3;3,-3,-3;-3,-3,-
3]./2.5; 
Box3=[-1,4,5;5,5,2;5,-5,5;-5,-5,6;-6,6,-6;6,5,-6;6,-2,-6;-4,-4,-
4]./2.5; 
  
%planar grid 
z=10; 
Box=zeros(z,3); 
a = 1; 
b = 1.2; 
a1=-1; 
b1=1; 
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for i=1:z 
    r1 = (b1-a1).*rand + a1; 
    Box(i,1)=r1; 
    r2 = (b1-a1).*rand + a1; 
    Box(i,2)=r2; 
    r = (b-a).*rand + a; 
    Box(i,3)=r; 
end 
  
%Box=[Box1;Box2;Box3]; 
%Box=rand(300,3)*10; 
%Box Attitude and Translation in frame 1 
phi1_body=BoxState1(4); 
theta1_body=BoxState1(5); 
psi1_body=BoxState1(6); 
%Body Rotation and Translation 
RcBZ1=[cos(psi1_body) -sin(psi1_body) 0;sin(psi1_body) cos(psi1_body) 
0; 0 0 1]; 
RcBY1=[cos(theta1_body) 0 sin(theta1_body); 0 1 0; -sin(theta1_body) 0 
cos(theta1_body)]; 
RcBX1=[1 0 0; 0 cos(phi1_body) -sin(phi1_body);0 sin(phi1_body) 
cos(phi1_body); ]; 
Rbody1=RcBX1*RcBY1*RcBZ1; 
Tbody1=[BoxState1(1);BoxState1(2);BoxState1(3)]; 
%Box Attitude and Translation in frame 2 
phi2_body=BoxState2(4); 
theta2_body=BoxState2(5); 
psi2_body=BoxState2(6); 
%Body Rotation and Translation 
RcBZ2=[cos(psi2_body) -sin(psi2_body) 0;sin(psi2_body) cos(psi2_body) 
0; 0 0 1]; 
RcBY2=[cos(theta2_body) 0 sin(theta2_body); 0 1 0; -sin(theta2_body) 0 
cos(theta2_body)]; 
RcBX2=[1 0 0; 0 cos(phi2_body) -sin(phi2_body);0 sin(phi2_body) 
cos(phi2_body); ]; 
Rbody2=RcBX2*RcBY2*RcBZ2; 
Tbody2=[BoxState2(1);BoxState2(2);BoxState2(3)]; 
m=size(Box,1); 
for i=1:m 
Box1_frame1(:,i)=Rbody1*Box(i,:)'+Tbody1; 
Box1_frame2(:,i)=Rbody2*Box(i,:)'+Tbody2; 
end 
  
%% Frame 1  
  
PointsMatrix1=Box1_frame1;  
PointsMatrix2=Box1_frame2; 
n=size(PointsMatrix1,2); 
n=n(1);%Number of Body Points 
  
phi1=CameraState1(4); 
theta1=CameraState1(5); 
psi1=CameraState1(6); 
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phi2=CameraState2(4); 
theta2=CameraState2(5); 
psi2=CameraState2(6); 
  
%Camera Rotations 
  
RcZ1=[cos(psi1) -sin(psi1) 0;sin(psi1) cos(psi1) 0; 0 0 1]; 
RcY1=[cos(theta1) 0 sin(theta1); 0 1 0; -sin(theta1) 0 cos(theta1)]; 
RcX1=[1 0 0; 0 cos(phi1) -sin(phi1);0 sin(phi1) cos(phi1); ]; 
R1=RcX1*RcY1*RcZ1; 
  
RcZ2=[cos(psi2) -sin(psi2) 0;sin(psi2) cos(psi2) 0; 0 0 1]; 
RcY2=[cos(theta2) 0 sin(theta2); 0 1 0; -sin(theta2) 0 cos(theta2)]; 
RcX2=[1 0 0; 0 cos(phi2) -sin(phi2);0 sin(phi2) cos(phi2); ]; 
R2=RcX2*RcY2*RcZ2; 
  
T1=CameraState1(1:3)'; 
T2=CameraState2(1:3)';%need to correct because the rotation is around 
the f 
  
for i=1:n %n 
Xw1=[PointsMatrix1(:,i);1]; %homogeneous position vector 
Xw2=[PointsMatrix2(:,i);1]; %homogeneous position vector 
ginv1=[R1' -R1'*T1; 0 0 0 1]; 
Xc1=(FI*PI*ginv1*Xw1); %Point in Camera1 Reference (X,Y,Z) 
ginv2=[R2' -R2'*T2; 0 0 0 1]; 
Xc2=(FI*PI*ginv2*Xw2); %Point in Camera2 Reference (X,Y,Z) 
  
%Xw3D=[Xw3D,Xw1]; 
XwCamera1=[XwCamera1,Xc1]; %Point 3D Position in Camera 1 frame 
XwCamera2=[XwCamera2,Xc2]; %Point 3D Position in Camera 2 frame 
X1=[Xc1(1);Xc1(2)]*(fl/Xc1(3)); 
X2=[Xc2(1);Xc2(2)]*(fl/Xc2(3)); 
CameraPoints1=[CameraPoints1,X1]; %2D image points Z Scaled 
CameraPoints2=[CameraPoints2,X2]; %2D image points Z Scaled 
end 
  
  
CameraDirection1=[0,0,0;0,0,fl]; 
CameraDirection2=[0,0,0;0,0,fl]; 
  
%% Plotting box1 
  
[ x ] = boxplots3D( Box1_frame1,CameraDirection1,0); 
[ x ] = boxplots3D( Box1_frame2,CameraDirection2,0); 
  
% %plot 3D points frame 1 
[ x ] = boxplots3D( XwCamera1,CameraDirection1,1); 
  
% %plot 3D points frame 2 
[ x ] = boxplots3D( XwCamera2,CameraDirection2,1); 
  
% %plot 2D Image frame 1 
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[ x ] = boxplots2D( CameraPoints1,FOV,fl); 
  
% %plot 2D Image frame 2 
[ x ] = boxplots2D( CameraPoints2,FOV,fl); 
save('box.mat') 
  
end 
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